Elucidate Mechanisms of Quinolone Alkaloid Biosynthesis via Iron(II)/2-Oxoglutarate Dependent Enzymes: Diverse, but Controlled Reactivity
通过铁 (II)/2-氧戊二酸依赖性酶阐明喹诺酮生物碱生物合成的机制:多样但受控的反应性
基本信息
- 批准号:10458319
- 负责人:
- 金额:$ 11.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AlkaloidsAnabolismAnti-Bacterial AgentsAntiviral AgentsAreaAspergillus nidulansBiochemicalBiologicalBiological AssayBiomedical EngineeringCatalysisCationsChemicalsComparative StudyCrystallographyCytochrome P450DeuteriumDevelopmentEnzymesEpigenetic ProcessExhibitsFamilyGene Expression RegulationGoalsHIVHydrogenHydroxylationInterceptIronKineticsKnowledgeLabelLeadLibrariesLogicMalignant NeoplasmsMetabolismMethodsMolecularMolecular CloningMononuclearNatural ProductsNatureOrganic SynthesisOutcomeOxidantsOxygenPathway interactionsPharmacologic SubstancePlayPreparationProteinsQuinolonesReactionRegulationResearchRoleSchemeSiteSolventsStructureStructure-Activity RelationshipTechniquesTimeVariantViral CancerX-Ray Crystallographyalpha ketoglutarateanaloganti-canceranticancer activityantimicrobialbasedesigndrug developmentdrug discoveryelectronic structurefunctional groupimprovedinsightinterestmembernon-Nativenovelscaffoldsimulation
项目摘要
Project Summary/Abstract
2-Oxoglutarate (2OG) dependent nonheme mononuclear iron (NHM-Fe) enzymes catalyze an exceedingly
broad scope of reactions that are involved in key chemical transformations of many important biological
pathways, such as gene regulation, epigenetics, and natural product biosynthesis. Although detailed
mechanistic understandings of the canonical hydroxylation reactivity found in 2OG/NHM-Fe enzymes have
been developed in recent years, it remains unknown how this hydroxylation paradigm can fully explain non-
hydroxylation reactivity in this family of enzymes, such as desaturation and epoxidation. Furthermore, given the
catalytic abilities of 2OG/NHM-Fe enzymes to construct pharmaceutically valuable molecular scaffolds,
exploiting these enzymes for biocatalysis applications represents an attractive but under developed area for
expanding natural product based compound libraries. In this proposal, we seek to provide critical
improvements on these under developed areas through the studies of AsqJ, a novel multifunctional 2OG/NHM-
Fe enzyme that is involved in Viridicatin-type quinolone alkaloid biosynthesis in Aspergillus nidulans. AsqJ
catalyzes a chemically interesting sequential desaturation/epoxidation reaction to construct Viridicatin core
structure, which represents a chemically unexplored strategy for Viridicatin synthesis. A multi-faceted
experimental method will be utilized to elucidate AsqJ reaction mechanisms, which consists of organic
synthesis, molecular cloning, biochemical assays, protein crystallography, pre-steady state kinetics, and
advanced spectroscopic techniques. This method will be further supplemented with molecular dynamic
simulations to generate molecular level understandings of the AsqJ catalysis. It is expected that the proposed
research will provide critical improvements to the mechanistic understandings of desaturation and epoxidation,
two chemically challenging but under explored reactions catalyzed by 2OG/NHM-Fe enzymes, and further
explore mechanism based bioengineering approach to access viridicatin-type scaffolds.
项目概要/摘要
2-氧戊二酸 (2OG) 依赖性非血红素单核铁 (NHM-Fe) 酶催化
涉及许多重要生物的关键化学转化的广泛反应
途径,例如基因调控、表观遗传学和天然产物生物合成。虽然详细
对 2OG/NHM-Fe 酶中典型羟基化反应性的机制理解
近年来发展起来,目前尚不清楚这种羟基化范式如何充分解释非
该酶家族中的羟基化反应,例如去饱和和环氧化。此外,鉴于
2OG/NHM-Fe 酶构建具有药学价值的分子支架的催化能力,
利用这些酶进行生物催化应用是一个有吸引力但尚未开发的领域
扩大基于天然产物的化合物库。在本提案中,我们寻求提供关键的
通过 AsqJ(一种新型多功能 2OG/NHM-)的研究,对这些欠发达地区进行了改进
Fe酶参与构巢曲霉中Viridicatin型喹诺酮生物碱的生物合成。阿斯吉
催化化学上有趣的连续去饱和/环氧化反应以构建 Viridicatin 核心
结构,它代表了化学上尚未探索的 Viridicatin 合成策略。一个多面的
将利用实验方法来阐明 AsqJ 反应机理,该反应机理包括有机
合成、分子克隆、生化测定、蛋白质晶体学、前稳态动力学和
先进的光谱技术。该方法将进一步补充分子动力学
模拟以产生对 AsqJ 催化的分子水平理解。预计拟议的
研究将为对去饱和和环氧化的机理理解提供重要的改进,
2OG/NHM-Fe 酶催化的两个化学上具有挑战性但尚未探索的反应,以及进一步
探索基于机制的生物工程方法来获取绿色素型支架。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yisong Guo其他文献
Yisong Guo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yisong Guo', 18)}}的其他基金
Elucidate Mechanisms of Quinolone Alkaloid Biosynthesis via Iron(II)/2-Oxoglutarate Dependent Enzymes: Diverse, but Controlled Reactivity
通过铁 (II)/2-氧戊二酸依赖性酶阐明喹诺酮生物碱生物合成的机制:多样但受控的反应性
- 批准号:
10675986 - 财政年份:2018
- 资助金额:
$ 11.17万 - 项目类别:
Elucidate Mechanisms of Quinolone Alkaloid Biosynthesis via Iron(II)/2-Oxoglutarate Dependent Enzymes: Diverse, but Controlled Reactivity
通过铁 (II)/2-氧戊二酸依赖性酶阐明喹诺酮生物碱生物合成的机制:多样但受控的反应性
- 批准号:
10197596 - 财政年份:2018
- 资助金额:
$ 11.17万 - 项目类别:
Elucidate Mechanisms of Quinolone Alkaloid Biosynthesis via Iron(II)/2-Oxoglutarate Dependent Enzymes: Diverse, but Controlled Reactivity
通过铁 (II)/2-氧戊二酸依赖性酶阐明喹诺酮生物碱生物合成的机制:多样但受控的反应性
- 批准号:
10466811 - 财政年份:2018
- 资助金额:
$ 11.17万 - 项目类别:
Elucidate Mechanisms of Quinolone Alkaloid Biosynthesis via Iron(II)/2-Oxoglutarate Dependent Enzymes: Diverse, but Controlled Reactivity
通过铁 (II)/2-氧戊二酸依赖性酶阐明喹诺酮生物碱生物合成的机制:多样但受控的反应性
- 批准号:
9753300 - 财政年份:2018
- 资助金额:
$ 11.17万 - 项目类别:
Dissect Mechanism of Iron(II)/2-Oxoglutarate Dependent Enzymes Catalyzed Halogenation in Nucleotide Biosynthesis
核苷酸生物合成中铁(II)/2-氧化戊二酸依赖性酶催化卤化的解析机制
- 批准号:
10660003 - 财政年份:2018
- 资助金额:
$ 11.17万 - 项目类别:
相似国自然基金
醛固酮瘤丙酸代谢异常通过MMA-肥大细胞-5-羟色胺-PCCA环路促进醛固酮合成的机制研究
- 批准号:82300887
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
苯丙氨酰tRNA合成酶α(FARSA)调控脂肪细胞脂质代谢的机制研究
- 批准号:82300954
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多组学研究STAT3调控CKMT2和CD36-FABP4影响脂肪细胞参与乳腺癌细胞磷酸肌酸合成的耐药代谢重编程
- 批准号:82360604
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
微生物固定二氧化碳合成琥珀酸的代谢流调控及其机制解析
- 批准号:22378166
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于T细胞代谢重编程研究二十五味儿茶丸通过促进亚精胺合成纠正Treg/Th17失衡治疗类风湿关节炎的作用机制
- 批准号:82360862
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Chemical Synthesis and Biology of Complex Alkaloids
复杂生物碱的化学合成和生物学
- 批准号:
10372050 - 财政年份:2020
- 资助金额:
$ 11.17万 - 项目类别:
Simultaneous Treatment of Viral and Bacterial Otitis Media Using Plant Natural Products
使用植物天然产品同时治疗病毒性和细菌性中耳炎
- 批准号:
10310502 - 财政年份:2020
- 资助金额:
$ 11.17万 - 项目类别:
Simultaneous Treatment of Viral and Bacterial Otitis Media Using Plant Natural Products
使用植物天然产品同时治疗病毒性和细菌性中耳炎
- 批准号:
10530599 - 财政年份:2020
- 资助金额:
$ 11.17万 - 项目类别:
Chemical Synthesis and Biology of Complex Alkaloids
复杂生物碱的化学合成和生物学
- 批准号:
10598537 - 财政年份:2020
- 资助金额:
$ 11.17万 - 项目类别:
Simultaneous Treatment of Viral and Bacterial Otitis Media Using Plant Natural Products
使用植物天然产品同时治疗病毒性和细菌性中耳炎
- 批准号:
10115426 - 财政年份:2020
- 资助金额:
$ 11.17万 - 项目类别: