Biofabrication of Multicompartment Human Liver Tissues for Chemical Screening
用于化学筛选的多室人肝组织的生物制造
基本信息
- 批准号:10457485
- 负责人:
- 金额:$ 19.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcute Liver FailureAdultAffectAnimal ModelAnimalsArchitectureBehaviorBile fluidBiliaryBiochemicalBloodBlood VesselsCell LineCell TherapyCell physiologyCellsChemicalsClinicalCollagenDrug ScreeningEndothelial CellsEngineeringExtracellular MatrixFamily suidaeFilamentFutureGelatinGoalsGrowthGrowth FactorHepaticHepatic Stellate CellHepatocyteHumanHydrogelsImplantIn SituIn VitroInfusion proceduresKupffer CellsLiverMechanicsMetabolismMicrofluidicsModelingNatural regenerationPathway interactionsPatientsPharmaceutical PreparationsPhysiologicalPrintingPropertyProtocols documentationRegenerative MedicineRodent ModelSourceStructureTechniquesTechnologyTestingTissue DonorsTissue EngineeringTissue TransplantationTissuesToxic effectTransformed Cell LineVascularizationbehavioral studybile ductbile formationbiofabricationbioprintingbioscaffoldcell typecholangiocytechronic liver diseasedensitydrug induced liver injurydrug metabolismdrug withdrawalend stage liver diseasehigh rewardhigh riskimplantationin vitro Modelin vivoinduced pluripotent stem cellliver functionmatrigelnovelpre-clinicalscaffoldscreeningshear stresssmall molecule
项目摘要
ABSTRACT / PROJECT SUMMARY
Title: Biofabrication of Multicompartment Human Liver Tissues for Chemical Screening
Drug-induced liver injury (DILI) is a leading cause of preclinical and clinical drug attrition, black box warnings on
drugs, and withdrawals of drugs from the marketplace. Unfortunately, animal models do not always suffice to
evaluate human DILI due to significant species-specific differences in drug metabolism pathways; therefore, in
vitro models of the human liver are being increasingly utilized to evaluate compound (drugs/chemicals)
metabolism and toxicity. However, current in vitro models of the human liver are unable to determine the effects
of compounds on the three major compartments of the liver, namely hepatic, vascular, and biliary, and how
toxicity to one compartment may affect the other compartments. Similarly, while there has been some progress
in developing implantable liver tissue surrogates as cell-based therapies for patients suffering from end-stage
liver failure, such tissues do not contain the above-mentioned liver compartments with physiological
interconnections. Our studies have shown that primary human hepatocytes (PHH) and liver endothelial cells
(LEC) display high levels of in vivo-like functions for 4+ weeks in vitro when organized into 3-dimensional (3D)
extracellular matrix (ECM) microgels that are generated using a high-throughput droplet microfluidics platform
(so-called microtissues). This microtissue technology is uniquely suited to control the microenvironment of liver
cells and could potentially protect cells from the shear stress induced via 3D bioprinting. Furthermore, we have
shown that cholangiocytes display sprouting behavior in decellularized liver ECM (dECM) but not in collagen-I
or Matrigel alone and such sprouting behavior can be directed via 3D bioprinting. In this high-risk/high-reward
R21 proposal, we will leverage these platforms and findings to test the novel hypothesis that a 3D-printed
biomaterial scaffold containing hepatic microtissues and liver dECM can be used to generate liver-like functional
and integrated compartments (vascular, hepatic, and biliary). In aim 1, we will fabricate and characterize 3D-
printed structures containing hepatic microtissues and LEC-lined vascular channels, while in aim 2, we will
incorporate cholangiocytes into the biofabricated structures and investigate the ability to control and detect bile
flow. If successful, our efforts will yield a first-of-its-kind scalable 3D-printed human liver tissue containing
integrated hepatic, vascular, and biliary compartments that displays stable levels of diverse liver functions for
several weeks in vitro. Ultimately, our 3D-printed human liver tissue can be used for investigating the effects of
compounds on all three compartments of the liver and their interactions, as well as for implanting into animal
models as potential cell-based therapy for chronic liver disease and acute liver failure.
摘要/项目摘要
标题:用于化学筛选的多室人类肝脏组织的生物制造
药物性肝损伤 (DILI) 是临床前和临床药物损耗的主要原因,黑框警告
药品,以及从市场上撤回药品。不幸的是,动物模型并不总是足以
由于药物代谢途径存在显着的物种特异性差异,因此评估人类 DILI;因此,在
人类肝脏的体外模型越来越多地用于评估化合物(药物/化学品)
代谢和毒性。然而,目前的人类肝脏体外模型无法确定其影响
化合物对肝脏三个主要区室(即肝区、血管区和胆区)的影响,以及如何作用
对一个隔室的毒性可能会影响其他隔室。同样,虽然取得了一些进展
开发可植入肝组织替代物作为晚期患者的细胞疗法
肝功能衰竭,此类组织不包含上述具有生理功能的肝区室
互连。我们的研究表明,原代人肝细胞(PHH)和肝内皮细胞
(LEC) 当组织成 3 维 (3D) 时,在体外 4 周以上表现出高水平的类体内功能
使用高通量液滴微流体平台生成的细胞外基质 (ECM) 微凝胶
(所谓的微组织)。这种微组织技术非常适合控制肝脏的微环境
细胞,并有可能保护细胞免受 3D 生物打印引起的剪切应力的影响。此外,我们还有
研究表明,胆管细胞在脱细胞肝脏 ECM (dECM) 中表现出萌芽行为,但在 I 型胶原蛋白中则不然
或单独使用基质胶,这种发芽行为可以通过 3D 生物打印来控制。在这个高风险/高回报的环境中
R21 提案中,我们将利用这些平台和研究结果来测试 3D 打印的新假设
含有肝微组织和肝dECM的生物材料支架可用于产生肝样功能
和综合室(血管、肝和胆管)。在目标 1 中,我们将制造并表征 3D-
包含肝微组织和 LEC 内衬血管通道的打印结构,而在目标 2 中,我们将
将胆管细胞纳入生物制造结构并研究控制和检测胆汁的能力
流动。如果成功,我们的努力将产生首个可扩展的 3D 打印人体肝脏组织,其中包含
整合的肝、血管和胆道室,显示出稳定水平的不同肝功能
体外几周。最终,我们的 3D 打印人体肝脏组织可用于研究
肝脏所有三个区室的化合物及其相互作用,以及植入动物体内
模型作为慢性肝病和急性肝衰竭的潜在细胞疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Salman R Khetani其他文献
Salman R Khetani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Salman R Khetani', 18)}}的其他基金
Multicellular Organotypic Mouse Model of Alcoholic Liver Disease
酒精性肝病的多细胞器官型小鼠模型
- 批准号:
10667672 - 财政年份:2023
- 资助金额:
$ 19.45万 - 项目类别:
Biofabrication of Multicompartment Human Liver Tissues for Chemical Screening
用于化学筛选的多室人肝组织的生物制造
- 批准号:
10317252 - 财政年份:2021
- 资助金额:
$ 19.45万 - 项目类别:
A bio-engineered hepatic niche for ex vivo expansion of HSCs
用于 HSC 离体扩增的生物工程肝脏生态位
- 批准号:
10631071 - 财政年份:2021
- 资助金额:
$ 19.45万 - 项目类别:
A bio-engineered hepatic niche for ex vivo expansion of HSCs
用于 HSC 离体扩增的生物工程肝脏生态位
- 批准号:
10452482 - 财政年份:2021
- 资助金额:
$ 19.45万 - 项目类别:
High-throughput exploration of chemomechanical crosstalk in the maturation of iPSC-derived human hepatocytes
iPSC 衍生的人肝细胞成熟过程中化学机械串扰的高通量探索
- 批准号:
10022330 - 财政年份:2019
- 资助金额:
$ 19.45万 - 项目类别:
A Scalable 3D Human Liver Co-culture Platform for Hepatitis B Virus Infection
用于乙型肝炎病毒感染的可扩展 3D 人类肝脏共培养平台
- 批准号:
9814819 - 财政年份:2019
- 资助金额:
$ 19.45万 - 项目类别:
Elucidating chemo-mechanical determinants of human hepatocyte and stellate cell responses in non-alcoholic fatty liver disease
阐明非酒精性脂肪肝患者肝细胞和星状细胞反应的化学机械决定因素
- 批准号:
10027053 - 财政年份:2018
- 资助金额:
$ 19.45万 - 项目类别:
Synergistic effects of ECM and heterotypic crosstalk on cellular responses in non-alcoholic fatty liver disease
ECM 和异型串扰对非酒精性脂肪肝细胞反应的协同作用
- 批准号:
10744973 - 财政年份:2018
- 资助金额:
$ 19.45万 - 项目类别:
Elucidating chemo-mechanical determinants of human hepatocyte and stellate cell responses in non-alcoholic fatty liver disease
阐明非酒精性脂肪肝患者肝细胞和星状细胞反应的化学机械决定因素
- 批准号:
10092152 - 财政年份:2018
- 资助金额:
$ 19.45万 - 项目类别:
Functionally maturing iPSC-derived human hepatocytes in 3D microgels
3D 微凝胶中功能成熟的 iPSC 衍生人肝细胞
- 批准号:
9226831 - 财政年份:2017
- 资助金额:
$ 19.45万 - 项目类别:
相似国自然基金
巨噬细胞Nogo-B通过FABP4/IL-18/IL-18R调控急性肝衰竭的分子机制研究
- 批准号:82304503
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肺炎克雷伯杆菌感染通过肝星状细胞激活CX3CR1+NK细胞诱导慢加急性肝衰竭的机制研究
- 批准号:82300720
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Prdx1通过Cathepsin B激活NLRP3炎症小体诱导肝细胞焦亡加重急性肝衰竭的机制研究
- 批准号:82302454
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA编辑酶ADAR1调控间充质干细胞免疫抑制功能在治疗急性肝衰竭中的作用机制研究
- 批准号:82370629
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Establishing Sox9 as a regulator of intrahepatic bile duct development and regeneration
建立 Sox9 作为肝内胆管发育和再生的调节因子
- 批准号:
10656256 - 财政年份:2022
- 资助金额:
$ 19.45万 - 项目类别:
Establishing Sox9 as a regulator of intrahepatic bile duct development and regeneration
建立 Sox9 作为肝内胆管发育和再生的调节因子
- 批准号:
10537874 - 财政年份:2022
- 资助金额:
$ 19.45万 - 项目类别:
Biofabrication of Multicompartment Human Liver Tissues for Chemical Screening
用于化学筛选的多室人肝组织的生物制造
- 批准号:
10317252 - 财政年份:2021
- 资助金额:
$ 19.45万 - 项目类别:
A Tissue Engineered Human Kidney Microphysiological System
组织工程人体肾脏微生理系统
- 批准号:
8516132 - 财政年份:2012
- 资助金额:
$ 19.45万 - 项目类别:
A Tissue Engineered Human Kidney Microphysiological System
组织工程人体肾脏微生理系统
- 批准号:
8926484 - 财政年份:2012
- 资助金额:
$ 19.45万 - 项目类别: