Exploring the connections between translation and mRNA decay

探索翻译和 mRNA 衰变之间的联系

基本信息

项目摘要

SUMMARY It has been recognized for decades that post-transcriptional regulation is as important as transcription for controlling gene expression, but much of post-transcriptional regulation is a black box. Alterations in post-transcriptional regulation can lead to disease, such as neurodegeneration, developmental defects, and cancer. One area of post-transcriptional regulation that remains in its infancy of understanding is how mRNA stability is affected by other events in the mRNA life cycle, such as translation. An overarching theme has been that repression of translation initiation precedes and causes mRNA decay, but there are many contradictory examples to this generalization. Here, we focus on two systems outside this generalization. First, my lab has made a significant advance in delineating translational repression in the absence of mRNA decay during early Drosophila embryogenesis through our discovery that the post-transcriptional repressor ME31B has different regulatory impacts before and after the MZT. ME31B represses translation before the MTZT, but stimulates mRNA decay after. We have found that ME31B represses translation through an eIF4E-binding protein called Cup, which is degraded during the MZT. Thus, a critical, unresolved issue is why ME31B fails to stimulate mRNA decay before the MZT. Work from my lab and others points to a potential role for Cup in blocking mRNA decay. We will address this issue by answering two questions. 1) What is the role of Cup in embryogenesis?; 2) How is mRNA decapping generally controlled during embryogenesis? Our second area of research is understanding how translation elongation affects mRNA decay. Work in model prokaryotic and eukaryotic systems has demonstrated that codon optimality affects mRNA stability. By developing a suite of new transcriptome-wide experimental and computational tools, my lab has found that translation elongation also alters mRNA stability in humans and that these changes are mediated partially through codon usage. Here, we will answer two related questions: 3) How does translation elongation affect mRNA stability in humans?; 4) What is the role of codon optimality in controlling gene expression? To do so, we will combine genetic, genome-wide, and classical molecular biology approaches. The outcomes of our research will be an improved understanding of post-transcriptional regulation, and our insights may inform our view of how gene misregulation underlies human disease.
概括 几十年来,人们已经认识到转录后调控与转录后调控同样重要。 转录控制基因表达,但大部分转录后调控 是一个黑匣子。转录后调控的改变可能导致疾病,例如 神经退行性疾病、发育缺陷和癌症。转录后区域之一 mRNA 稳定性如何受到影响这一调控仍处于初步理解阶段 mRNA 生命周期中的其他事件,例如翻译。一个总体主题是 翻译起始的抑制先于并导致 mRNA 衰减,但是 有许多与这一概括相矛盾的例子。这里我们重点关注两个 在此概括之外的系统。首先,我的实验室在以下方面取得了重大进展: 描绘早期在没有 mRNA 衰减的情况下的翻译抑制 通过我们发现转录后阻遏物来果蝇胚胎发生 ME31B在MZT前后有不同的监管影响。 ME31B镇压 在 MTZT 之前翻译,但在 MTZT 之后刺激 mRNA 衰减。我们发现 ME31B 通过称为 Cup 的 eIF4E 结合蛋白抑制翻译,该蛋白是 MZT 期间降级。因此,一个关键的、未解决的问题是为什么 ME31B 无法 在 MZT 之前刺激 mRNA 衰减。我的实验室和其他人的工作表明 Cup 在阻止 mRNA 衰变方面的潜在作用。我们将通过回答来解决这个问题 两个问题。 1)Cup在胚胎发生中的作用是什么? 2) mRNA如何 脱盖通常在胚胎发生过程中受控?我们的第二个研究领域是 了解翻译延伸如何影响 mRNA 衰减。在模型中工作 原核和真核系统已证明密码子最优性影响 mRNA 稳定性。通过开发一套新的全转录组实验和 计算工具,我的实验室发现翻译延伸也会改变 mRNA 人类的稳定性,这些变化部分是通过密码子的使用来介导的。 在这里,我们将回答两个相关问题:3)平移伸长率如何影响 人类 mRNA 稳定性? 4) 密码子最优性在控制基因中的作用是什么 表达?为此,我们将结合遗传、全基因组和经典分子 生物学方法。我们的研究成果将加深对 转录后调控,我们的见解可能会告诉我们基因如何 监管不当是人类疾病的根源。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Olivia Selfridge Rissland其他文献

Olivia Selfridge Rissland的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Olivia Selfridge Rissland', 18)}}的其他基金

Self-cleaving peptides: Mechanisms and Use in Diverse Eukaryotic Species
自裂解肽:机制及其在不同真核物种中的应用
  • 批准号:
    10678481
  • 财政年份:
    2023
  • 资助金额:
    $ 38.21万
  • 项目类别:
Developmental priming of mRNA decay during Drosophila embryogenesis
果蝇胚胎发生过程中 mRNA 衰退的发育启动
  • 批准号:
    10573021
  • 财政年份:
    2023
  • 资助金额:
    $ 38.21万
  • 项目类别:
Mechanisms of protein production in the parasite Giardia Iamblia
寄生虫贾第鞭毛虫的蛋白质生产机制
  • 批准号:
    10116277
  • 财政年份:
    2020
  • 资助金额:
    $ 38.21万
  • 项目类别:
Exploring the connections between translation and mRNA decay
探索翻译和 mRNA 衰变之间的联系
  • 批准号:
    10468440
  • 财政年份:
    2018
  • 资助金额:
    $ 38.21万
  • 项目类别:
Exploring the connections between translation and mRNA decay
探索翻译和 mRNA 衰变之间的联系
  • 批准号:
    10220075
  • 财政年份:
    2018
  • 资助金额:
    $ 38.21万
  • 项目类别:
Exploring the connections between translation and mRNA decay
探索翻译和 mRNA 衰变之间的联系
  • 批准号:
    10665859
  • 财政年份:
    2018
  • 资助金额:
    $ 38.21万
  • 项目类别:
Equipment Supplement R35GM128680: Exploring the connections between translation and mRNA decay
设备补充 R35GM128680:探索翻译与 mRNA 衰减之间的联系
  • 批准号:
    10386265
  • 财政年份:
    2018
  • 资助金额:
    $ 38.21万
  • 项目类别:
Cytoplasmic mechanisms of gene regulation: intersections and coordination
基因调控的细胞质机制:交叉和协调
  • 批准号:
    10623469
  • 财政年份:
    2018
  • 资助金额:
    $ 38.21万
  • 项目类别:
Dissecting Translational Regulation by Genome-Wide Mapping of Initiation Factors
通过启动因子的全基因组图谱剖析翻译调控
  • 批准号:
    8538468
  • 财政年份:
    2012
  • 资助金额:
    $ 38.21万
  • 项目类别:
Dissecting Translational Regulation by Genome-Wide Mapping of Initiation Factors
通过启动因子的全基因组图谱剖析翻译调控
  • 批准号:
    8352906
  • 财政年份:
    2012
  • 资助金额:
    $ 38.21万
  • 项目类别:

相似国自然基金

京津冀水供给服务空间流动及其生态阈值对跨区域国土空间的影响与优化
  • 批准号:
    42301344
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
区域医疗一体化对基层医疗机构合理用药的影响及优化策略——基于创新扩散理论
  • 批准号:
    72304011
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
政府数据开放与资本跨区域流动:影响机理与经济后果
  • 批准号:
    72302091
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
农产品出口区域化管理对企业和农户的行为决策及经济绩效影响研究
  • 批准号:
    72373067
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
转录因子ISL1基因启动子区域突变影响基因转录调控及其对室间隔缺损发生的作用机制研究
  • 批准号:
    82300340
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
  • 批准号:
    10751106
  • 财政年份:
    2024
  • 资助金额:
    $ 38.21万
  • 项目类别:
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
  • 批准号:
    10752930
  • 财政年份:
    2024
  • 资助金额:
    $ 38.21万
  • 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
  • 批准号:
    10749539
  • 财政年份:
    2024
  • 资助金额:
    $ 38.21万
  • 项目类别:
Cortical Circuits Underlying Functional Recovery Following Stroke
中风后功能恢复的皮层回路
  • 批准号:
    10638607
  • 财政年份:
    2023
  • 资助金额:
    $ 38.21万
  • 项目类别:
Circuit-specific catecholamine regulation of sensitivity to delayed punishment
电路特异性儿茶酚胺对延迟惩罚敏感性的调节
  • 批准号:
    10648714
  • 财政年份:
    2023
  • 资助金额:
    $ 38.21万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了