Enhancing the efficacy of Radiation Therapy for brainstem glioma by targeting ATM
通过靶向 ATM 提高脑干胶质瘤放射治疗的疗效
基本信息
- 批准号:10448205
- 负责人:
- 金额:$ 21.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAtaxiaBrainBrain NeoplasmsBrain StemBrain Stem GliomaCellsCentral Nervous System NeoplasmsCessation of lifeChildChildhood Brain NeoplasmClassificationClinical TrialsClinical Trials DesignCombined Modality TherapyDNA DamageDataDiffuse intrinsic pontine gliomaEnterobacteria phage P1 Cre recombinaseEtiologyFutureGeneticGenetically Engineered MouseGenomicsGliomaGoalsH3 K27M mutationHistonesImmuneImmune responseImmune systemImmunocompetentImmunologicsImmunotherapeutic agentImmunotherapyInnate Immune ResponseInterferon Type IInterferonsInvestigationIonizing radiationLeadLoxP-flanked alleleMapsMediatingModelingMolecularMusMutateMutationNeurologic SymptomsOncogenesPathway interactionsPatientsPharmacologyPhenotypePopulationProcessProtein-Serine-Threonine KinasesRadiation ToleranceRadiation therapyRadiosensitizationResearch PersonnelResolutionRetroviridaeSignal PathwaySignal TransductionSystemTestingTherapeuticTimeTissuesTreatment-related toxicityWorkWorld Health Organizationcell injuryclinical investigationdesigndiffuse midline gliomadriver mutationds-DNAeffective therapyepigenetic therapyexperimental studyimprovedin vivoinhibitormouse modelneoplastic cellnerve stem cellnovelnovel therapeutic interventionpre-clinicalprogenitorradiation resistancerational designrecruitreduce symptomsresponsesensortreatment strategytumortumor immunologytumor microenvironmenttumor progression
项目摘要
Enhancing the efficacy of radiation therapy for brainstem glioma by targeting ATM
Project Summary/Abstract
Brainstem gliomas are devastating pediatric brain tumors. Brainstem gliomas include “diffuse midline gliomas
with H3K27M mutation” in the 2016 World Health Organization Classification of Tumors of the CNS, and
includie tumors previously referred to as “diffuse intrinsic pontine gliomas” or DIPG. Brainstem gliomas are
uniformly lethal to the patients. Radiation therapy is thought to be the only effective treatment for these
tumors, providing temporary relief from symptoms and from tumor progression. However, brainstem gliomas
inevitably progress after radiation therapy and result in death of the patient resulting in a median survival of
less than one year. New strategies are needed to improve the efficacy of radiation therapy to improve patient
survival. One promising investigational therapeutic strategy is to radiosensitize tumors by inactivating the
serine/threonine kinase Ataxia Telangiactasia Mutated (ATM). ATM is the master sensor for DNA damage,
and orchestrates the DNA damage response after cells are damaged by ionizing radiation or other DNA
damaging agents. ATM inactivation dramatically radiosensitizes a genetically engineered mouse model of
brainstem glioma. When ATM is inactivated in the tumor cells of our mouse model of brainstem glioma,
radiation therapy is particularly effective and extends median overall survival of the mice by approximately
threefold compared to mice bearing tumors with intact ATM. However, the specific cell populations that are
radiosensitized by ATM inactivation, and the mechanisms by which ATM inactivation radiosensitizes brainstem
gliomas, is unknown. A deeper understanding of the molecular mechansisms by which ATM inactivation can
radiosensitize brainstem gliomas is needed to enable the rational design of combination therapies that
combine ATM inhibition, radiation therapy, and other novel epigenetic and immunologic therapies to maximize
survival of patients with brainstem gliomas. Here, I will test the hypothesis that ATM inactivation specifically
radiosensitizes a population of progenitor-like tumor cells in our genetically engineered mouse model of
brainstem glioma. In parallel with this work, I will dissect type I interferon signaling pathways that are
contribute to radiosensitivity when ATM is inactivated. These experiments will map the tumor
microenvironment of a mouse model of brainstem glioma at single cell resolution for the first time. They will
also credential a genetically-engineered mouse model of brainstem glioma with an intact immune system for
preclinical investigations of immunotherapeutic approaches. Additionally, the proposed work will provide me
with critical expertise in genetically engineered mouse models and in immunologic investigations that will help
me transition to a productive independent investigator.
通过靶向 ATM 提高脑干胶质瘤放射治疗的疗效
项目概要/摘要
脑干胶质瘤是毁灭性的儿童脑肿瘤,包括“弥漫性中线胶质瘤”。
2016 年世界卫生组织中枢神经系统肿瘤分类中的“具有 H3K27M 突变”,以及
包括以前称为“弥漫性脑桥胶质瘤”或 DIPG 的肿瘤。
放射治疗被认为是对这些患者唯一有效的治疗方法。
肿瘤,暂时缓解症状和肿瘤进展。
放射治疗后不可避免地会出现进展并导致患者死亡,从而导致中位生存期
需要新的策略来提高放射治疗的疗效以改善患者的状况。
一种有前途的研究治疗策略是通过灭活肿瘤来提高放射敏感性。
丝氨酸/苏氨酸激酶 Ataxia Telangiactasia Mutated (ATM) 是 DNA 损伤的主要传感器。
并在细胞受到电离辐射或其他 DNA 损伤后协调 DNA 损伤反应
ATM 失活可显着提高基因工程小鼠模型的放射敏感性。
当我们的脑干胶质瘤小鼠模型的肿瘤细胞中 ATM 失活时,
放射治疗特别有效,可将小鼠的中位总生存期延长约
与具有完整 ATM 的肿瘤小鼠相比,其数量增加了三倍。
ATM 失活引起的放射增敏,以及 ATM 失活使脑干放射增敏的机制
对于 ATM 失活的分子机制尚不清楚。
需要对脑干胶质瘤进行放射增敏才能合理设计联合疗法,
结合 ATM 抑制、放射治疗和其他新型表观遗传学和免疫疗法,以最大限度地提高
在这里,我将检验 ATM 失活的假设。
在我们的基因工程小鼠模型中,对一群类祖细胞肿瘤细胞进行放射增敏
在这项工作的同时,我将剖析 I 型干扰素信号通路。
当 ATM 失活时,这些实验将有助于绘制肿瘤图谱。
他们将首次以单细胞分辨率研究小鼠脑干胶质瘤模型的微环境。
还证明了具有完整免疫系统的脑干胶质瘤基因工程小鼠模型
此外,拟议的工作将为我提供免疫治疗方法的临床前研究。
拥有基因工程小鼠模型和免疫学研究方面的关键专业知识,这将有助于
我转变为一名富有成效的独立调查员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zachary Reitman其他文献
Zachary Reitman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zachary Reitman', 18)}}的其他基金
Enhancing the efficacy of Radiation Therapy for brainstem glioma by targeting ATM
通过靶向 ATM 提高脑干胶质瘤放射治疗的疗效
- 批准号:
10674851 - 财政年份:2022
- 资助金额:
$ 21.35万 - 项目类别:
相似国自然基金
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Plasma neurofilament light chain as a potential disease monitoring biomarker in Wolfram syndrome
血浆神经丝轻链作为 Wolfram 综合征潜在疾病监测生物标志物
- 批准号:
10727328 - 财政年份:2023
- 资助金额:
$ 21.35万 - 项目类别:
The role of Tcf20 in activity-dependent inhibitory signaling and autism spectrum disorder pathogenesis
Tcf20 在活动依赖性抑制信号传导和自闭症谱系障碍发病机制中的作用
- 批准号:
10570031 - 财政年份:2023
- 资助金额:
$ 21.35万 - 项目类别:
Development of a conditional ataxin-1 knockout mouse line
条件性ataxin-1基因敲除小鼠品系的开发
- 批准号:
10642313 - 财政年份:2023
- 资助金额:
$ 21.35万 - 项目类别:
Germline mutagenesis at meiotic double-strand breaks
减数分裂双链断裂处的种系突变
- 批准号:
10720403 - 财政年份:2023
- 资助金额:
$ 21.35万 - 项目类别: