Ms. LILAC: Muscle Mass in the Life and Longevity After Cancer (LILAC) Study
LILAC 女士:癌症后生命和长寿 (LILAC) 研究中的肌肉质量
基本信息
- 批准号:10446331
- 负责人:
- 金额:$ 72.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-09 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:Activities of Daily LivingAddressAgeAgingBig DataBloodBreastCancer PatientCancer SurvivorCancer SurvivorshipClinical ResearchColorectalCommunitiesCreatineDataDevelopmentDiagnosisDual-Energy X-Ray AbsorptiometryElderlyEpidemiologyEquilibriumFemaleFundingFutureGait speedGynecologicHealthHomeIncidenceInterventionKnowledgeLifeLongevityLungMachine LearningMagnetic Resonance ImagingMalignant NeoplasmsMeasuresMetabolicMethodologyMethodsMorbidity - disease rateMuscleMuscular AtrophyNational Cancer InstituteOutcomeParticipantPathway interactionsPhysical FunctionPhysical PerformancePhysiologicalPopulationPostmenopauseProcessProspective cohort studyProtocols documentationPublic HealthQuality of lifeQuestionnairesRecommendationResearchResearch DesignSample SizeSamplingSkeletal MuscleSourceStandardizationSurgical complicationWomanWomen&aposs HealthX-Ray Computed Tomographyage effectage groupage relatedage-related muscle lossanticancer researchcancer invasivenesscancer therapycohortcomparison groupdensitydisabilityepidemiology studyfollow-upfunctional declinefunctional outcomeshealthspanimprovedinnovationlean body massmachine learning methodmalignant muscle neoplasmmelanomamortalitymuscle formnormal agingnovelnovel strategiesolder womenpopulation basedpreclinical studyprediction algorithmpreventreduced muscle massrisk predictionskeletal muscle wastingsurvivorship
项目摘要
ABSTRACT
There is emerging evidence that cancer and its treatments may accelerate the normal aging
process, increasing the magnitude and rate of decline in functional capacity. This accelerated
aging process is hypothesized to hasten the occurrence of common adverse age-related
outcomes in cancer survivors, including loss of muscle mass and decrease in physical function.
However, there is no data describing age-related loss of muscle mass and its relation to physical
function in the long-term in cancer survivors. This project will directly address three key
methodological challenges in research on cancer survivorship: 1) obtaining accurate measures
of skeletal muscle mass in large population-based cohorts of community dwelling older adults, 2)
disentangling the effect of age versus cancer on the relationship between muscle mass, physical
function (gait speed, balance, strength), and functional decline, and 3) the large sample size
required to understand predictors of low muscle mass using big data (machine learning)
approaches. The D3-creatine dilution method (D3Cr) will be used to obtain a direct measure of
muscle mass remotely, using a protocol that has been previously validated in clinical and
epidemiologic research. This study will measure D3Cr muscle mass in 6614 participants (3044
cancer survivors and 3570 cancer-free controls) in the Women’s Health Initiative (WHI), a large
prospective cohort study (n=161,808) of postmenopausal women with over 25 years of follow-up.
Participants will be drawn from two sub-cohorts embedded within the WHI using an incidence
density sampling approach. Cancer survivors will be drawn from an existing NCI-funded
survivorship cohort, the Life and Longevity After Cancer (LILAC) cohort, and cancer-free controls
will be drawn from the WHI Long Life Study 2. The overall objective of this application is to
examine the antecedents and consequences of low muscle mass in cancer survivors, using
innovative methods to overcome major sources of bias common in cancer research. The study
aims are to: 1) create age-standardized muscle mass percentile curves and z-scores to
characterize the distribution of D3- muscle mass in cancer survivors and non-cancer controls, 2)
compare muscle mass, physical function, and functional decline in cancer survivors and non-
cancer controls, and 3) use machine learning approaches to generate multivariate risk-prediction
algorithms to detect low muscle mass. This project addresses an urgent need identified by the
NCI for research in older and long-term cancer survivors. The results of this study will be used to
develop interventions to mitigate the harmful effects of low muscle mass in older adults and
promote healthy survivorship in cancer survivors in the old (>65) and oldest-old (>85) age groups.
抽象的
有新的证据表明癌症及其治疗可能会加速正常衰老
过程中,功能能力下降的幅度和速度加快。
衰老过程加速了与年龄相关的常见不良事件的发生
癌症幸存者的结果,包括肌肉质量损失和身体功能下降。
然而,没有数据描述与年龄相关的肌肉质量损失及其与身体的关系
该项目将直接解决三个关键问题。
癌症生存研究中的方法论挑战:1)获得准确的测量结果
大型社区居住老年人群体的骨骼肌质量,2)
阐明年龄与癌症对肌肉质量、身体素质之间关系的影响
功能(步态速度、平衡、力量)和功能衰退,以及 3)大样本量
需要使用大数据(机器学习)了解低肌肉质量的预测因素
D3-肌酸稀释法(D3Cr)将用于直接测量。
远程肌肉质量,使用先前已在临床和临床中验证过的协议
本研究将测量 6614 名参与者(3044 名)的 D3Cr 肌肉质量。
妇女健康倡议 (WHI) 中的癌症幸存者和 3570 名无癌症对照者
对绝经后妇女进行的前瞻性队列研究 (n=161,808),随访时间超过 25 年。
参与者将使用发生率从 WHI 内的两个子队列中抽取
癌症幸存者将从现有的 NCI 资助的方法中抽取。
幸存者队列、癌症后的生命和长寿 (LILAC) 队列以及无癌对照
将取自 WHI 长寿命研究 2。该应用程序的总体目标是
检查癌症幸存者低肌肉质量的前因和后果,使用
该研究克服了癌症研究中常见的主要偏见来源的创新方法。
目标是:1) 创建年龄标准化的肌肉质量百分位数曲线和 z 分数
表征癌症幸存者和非癌症对照者中 D3- 肌肉质量的分布,2)
比较癌症幸存者和非癌症幸存者的肌肉质量、身体功能和功能下降
癌症控制,3) 使用机器学习方法生成多变量风险预测
该项目解决了检测低肌肉质量的迫切需求。
NCI 针对老年和长期癌症幸存者的研究 这项研究的结果将用于
制定干预措施以减轻老年人肌肉质量低的有害影响
促进老年(> 65 岁)和高龄老人(> 85 岁)年龄组癌症幸存者的健康生存。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hailey Rose Banack其他文献
Hailey Rose Banack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hailey Rose Banack', 18)}}的其他基金
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 72.84万 - 项目类别:
Ms. LILAC: Muscle Mass in the Life and Longevity After Cancer (LILAC) Study
LILAC 女士:癌症后生命和长寿 (LILAC) 研究中的肌肉质量
- 批准号:
10589078 - 财政年份:2022
- 资助金额:
$ 72.84万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Engineered tissue arrays to streamline deimmunized DMD gene therapy vectors
工程组织阵列可简化去免疫 DMD 基因治疗载体
- 批准号:
10724882 - 财政年份:2023
- 资助金额:
$ 72.84万 - 项目类别:
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 72.84万 - 项目类别:
Preserving Physical Function in Older Adults with Cancer: Impact of an Optimizing Nutrition Intervention Applied Before and After Surgery
保留患有癌症的老年人的身体功能:手术前后应用优化营养干预的影响
- 批准号:
10643468 - 财政年份:2023
- 资助金额:
$ 72.84万 - 项目类别:
UAS-CLEAR: A new nationally representative longitudinal study of caregiving experiences and well-being across the lifecourse
UAS-CLEAR:一项新的全国代表性纵向研究,涉及整个生命过程中的护理体验和福祉
- 批准号:
10729032 - 财政年份:2023
- 资助金额:
$ 72.84万 - 项目类别:
Testing a Mobile App to Improve Toothbrushing Skills and Habits in Teens with Autism.
测试移动应用程序以提高自闭症青少年的刷牙技能和习惯。
- 批准号:
10738080 - 财政年份:2023
- 资助金额:
$ 72.84万 - 项目类别: