Scalable and Sensor-Agnostic Software for Distributed Processing and Visualization of Multi-Site MEG/EEG Datasets
可扩展且与传感器无关的软件,用于多站点 MEG/EEG 数据集的分布式处理和可视化
基本信息
- 批准号:10442915
- 负责人:
- 金额:$ 67.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAlzheimer&aposs DiseaseAptitudeBasic ScienceBrainBrain imagingBrain regionClinicalClinical ResearchCodeCognitive deficitsCommunitiesComputer softwareDataData AnalysesData SetDatabasesDevelopmentDiagnosisDiseaseDocumentationEducational workshopElectrocorticogramElectrodesElectroencephalographyElectromagneticsElectrophysiology (science)EnsureEpilepsyFrequenciesFunctional Magnetic Resonance ImagingGrantHumanIndividualInstitutionKnowledgeLaboratoriesLanguage DevelopmentMachine LearningMagnetoencephalographyManufacturer NameMapsMeasurementMeasuresMental disordersMethodologyMethodsModelingModernizationNeurologicNeurosciences ResearchNoiseObsessive-Compulsive DisorderOnline SystemsOpticsPopulationPositioning AttributeProcessPumpPythonsReadingReproducibilityResearchResearch PersonnelResolutionSamplingScalp structureSchizophreniaScienceSignal TransductionSiteSourceStatistical Data InterpretationStreamStructureSurfaceSystemTechniquesTechnologyTemperatureTestingTrainingUnited States National Institutes of HealthVisualizationWorkWritingautism spectrum disorderbasecomputerized data processingdata analysis pipelinedata formatdata standardsdesignflexibilityhemodynamicshuman dataimprovedinnovationlight weightmagnetic fieldmillisecondnovelpedagogyreconstructionsensorsoftware developmentsource localizationtool
项目摘要
Project Summary
During the past three decades non-invasive functional brain imaging has developed immensely in terms of
measurement technologies, analysis methods, and innovative paradigms to capture information about brain
function both in healthy and diseased individuals. While functional MRI (fMRI) provides a wealth of information
by measuring the indirect slow hemodynamic signals. Magnetoencephalography (MEG) and
electroencephalography (EEG) remain the only noninvasive techniques capable of directly measuring the
electrophysiological activity directly with a millisecond resolution. During the past twelve years we have
developed, with NIH support, the MNE-Python software, which covers multiple methods of data preprocessing,
source localization, statistical analysis, and estimation of functional connectivity between distributed brain
regions. All algorithms and utility functions are implemented in a consistent manner with well-documented
interfaces, enabling users to create M/EEG data analysis pipelines by writing Python scripts. To further extend
our software to meet the needs of a growing user base and reflect recent developments in MEG/EEG as well
as in invasive electrophysiological recordings. Optically Pumped Magnetometers (OPMs) are sensitive room-
temperature magnetic field sensors that have begun to provide movable, flexible, lightweight, on-scalp MEG
systems, and may soon provide higher signal-to-noise ratio and more complete spatial frequency sampling
than SQUID-based systems. However, analysis tools optimal processing of OPM-MEG data are largely
missing. Therefore, in Aim 1, we will introduce tools for High-Resolution On-Scalp OPM-MEG Data Analysis.
Electrocorticography (ECoG) and subcortical EEG (sEEG) provide focal spatial measurements of the
electrophysiological activity. In Aim 2, we will develop sEEG and ECoG workflows, which includes electrode
localization and intracranial inverse and forward modeling. Recent methodological advances by our group and
the availability of on-scalp OPM-MEG systems (Aim 1) and ECoG/sEEG (Aim 2) have expanded the
possibilities for improved localization of deep (cortical and subcortical) sources in basic and clinical research
applications. In Aim 3, we will introduce these methods to the repertoire of MNE-Python and will use phantom
recordings, human data with known ground truth, and existing MEG databases to validate the new methods.
Finally, in Aim 4, we will continue to develop MNE-Python using best programming practices ensuring
multiplatform compatibility, extensive web-based documentation, training and forums, and hands-on training
workshops.
项目概要
在过去的三十年中,非侵入性功能性脑成像在以下方面取得了巨大发展:
捕获大脑信息的测量技术、分析方法和创新范式
在健康和患病个体中均发挥作用。虽然功能性 MRI (fMRI) 提供了丰富的信息
通过测量间接慢血流动力学信号。脑磁图(MEG)和
脑电图(EEG)仍然是唯一能够直接测量脑电图的无创技术
直接以毫秒分辨率进行电生理活动。在过去的十二年里,我们
在 NIH 的支持下开发了 MNE-Python 软件,涵盖多种数据预处理方法,
源定位、统计分析和分布式大脑之间功能连接的估计
地区。所有算法和实用函数均以一致的方式实现,并有详细记录
接口,使用户能够通过编写Python脚本来创建M/EEG数据分析管道。为进一步延伸
我们的软件可以满足不断增长的用户群的需求,并反映 MEG/EEG 的最新发展
如侵入性电生理记录。光泵磁力计 (OPM) 是灵敏的室内
温度磁场传感器已开始提供可移动、灵活、轻便、头皮 MEG
系统,并可能很快提供更高的信噪比和更完整的空间频率采样
比基于 SQUID 的系统。然而,OPM-MEG 数据的分析工具优化处理在很大程度上是
丢失的。因此,在目标 1 中,我们将介绍用于高分辨率头皮 OPM-MEG 数据分析的工具。
皮质电图 (ECoG) 和皮质下脑电图 (sEEG) 提供大脑皮层的焦点空间测量
电生理活动。在目标 2 中,我们将开发 sEEG 和 ECoG 工作流程,其中包括电极
定位和颅内逆向和正向建模。我们小组最近的方法论进展
头皮 OPM-MEG 系统(目标 1)和 ECoG/SEEG(目标 2)的可用性扩大了
在基础和临床研究中改善深层(皮质和皮质下)源定位的可能性
应用程序。在目标 3 中,我们将把这些方法引入 MNE-Python 的库中,并使用 phantom
录音、具有已知地面事实的人类数据以及现有的 MEG 数据库来验证新方法。
最后,在目标 4 中,我们将继续使用最佳编程实践来开发 MNE-Python,确保
多平台兼容性、广泛的基于网络的文档、培训和论坛以及实践培训
研讨会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATTI HAMALAINEN其他文献
MATTI HAMALAINEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATTI HAMALAINEN', 18)}}的其他基金
Integrating Electromagnetic Multifocal Brain Stimulation and Recording Technologies
集成电磁多焦脑刺激和记录技术
- 批准号:
10224853 - 财政年份:2020
- 资助金额:
$ 67.13万 - 项目类别:
Integrating Electromagnetic Multifocal Brain Stimulation and Recording Technologies
集成电磁多焦脑刺激和记录技术
- 批准号:
10038182 - 财政年份:2020
- 资助金额:
$ 67.13万 - 项目类别:
Scalable Software for Distributed Processing and Visualization of Multi-Site MEG/EEG Datasets
用于多站点 MEG/EEG 数据集分布式处理和可视化的可扩展软件
- 批准号:
9750274 - 财政年份:2018
- 资助金额:
$ 67.13万 - 项目类别:
Scalable Software for Distributed Processing and Visualization of Multi-Site MEG/EEG Datasets
用于多站点 MEG/EEG 数据集分布式处理和可视化的可扩展软件
- 批准号:
10175064 - 财政年份:2018
- 资助金额:
$ 67.13万 - 项目类别:
Sonoelectric tomography (SET): High-resolution noninvasive neuronal current tomography
声电断层扫描 (SET):高分辨率无创神经元电流断层扫描
- 批准号:
9148266 - 财政年份:2015
- 资助金额:
$ 67.13万 - 项目类别:
Sonoelectric tomography (SET): High-resolution noninvasive neuronal current tomography
声电断层扫描 (SET):高分辨率无创神经元电流断层扫描
- 批准号:
9037285 - 财政年份:2015
- 资助金额:
$ 67.13万 - 项目类别:
CRCNS: Advancing Computational Methods to Reveal Human Thalamocortical Dynamics
CRCNS:推进计算方法来揭示人类丘脑皮质动力学
- 批准号:
8927069 - 财政年份:2014
- 资助金额:
$ 67.13万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
MBP酶切L1CAM介导的线粒体自噬在阿尔茨海默病中的作用和机制
- 批准号:81901296
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 67.13万 - 项目类别:
CRCNS: Deep Learning to Discover Neurovascular Disruptions in Alzheimer's Disease
CRCNS:深度学习发现阿尔茨海默病的神经血管破坏
- 批准号:
10831259 - 财政年份:2023
- 资助金额:
$ 67.13万 - 项目类别:
Leveraging natural and engineered genetic barcodes from single cell RNA sequencing to investigate cellular evolution, clonal expansion, and associations between cellular genotypes and phenotypes
利用单细胞 RNA 测序中的天然和工程遗传条形码来研究细胞进化、克隆扩增以及细胞基因型和表型之间的关联
- 批准号:
10679186 - 财政年份:2023
- 资助金额:
$ 67.13万 - 项目类别:
A Novel Algorithm to Identify People with Undiagnosed Alzheimer's Disease and Related Dementias
一种识别未确诊阿尔茨海默病和相关痴呆症患者的新算法
- 批准号:
10696912 - 财政年份:2023
- 资助金额:
$ 67.13万 - 项目类别: