Hit-to-lead optimization for heart failure drug discovery
心力衰竭药物发现的先导化合物优化
基本信息
- 批准号:10442431
- 负责人:
- 金额:$ 72.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-17 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalATP phosphohydrolaseAddressAdultAnimalsAreaArrhythmiaBiological AssayCa(2+)-Transporting ATPaseCalciumCardiacCardiac MyocytesCardiologyCardiotoxicityCardiovascular systemCellsCellular AssayCharacteristicsChemistryClinical ResearchCollaborationsComputersComputing MethodologiesDataDefectDiastoleDiseaseDoseDrug DesignDrug KineticsEnsureExcretory functionFunctional disorderGoalsHeartHeart DiseasesHeart failureHumanHypertrophic CardiomyopathyImpairmentIn SituIn VitroLaboratoriesLeadLong-Term EffectsMedicineMembrane ProteinsMetabolismModelingMolecularMolecular TargetMorbidity - disease rateMusMuscleMuscle CellsOutcomePatientsPeripheralPharmaceutical PreparationsPharmacological TreatmentPharmacologyPlayProcessPropertyPumpReperfusion InjuryResearchRoleSafetySarcoplasmic ReticulumSeriesSolidSymptomsTestingTherapeuticTreatment EfficacyTreatment FailureUnited StatesValidationVentricularabsorptionclinical applicationcost effectivedesigndrug developmentdrug discoveryflexibilityfunctional restorationheart functionimprovedin silicoin vitro testingin vivoinduced pluripotent stem cellinnovationlead optimizationmonolayermortalitymultidisciplinarynovelnovel therapeuticspreclinical studyresponsesarcoplasmic reticulum calcium ATPasescreeningsmall moleculesmall molecule therapeuticssuccesssynergismtherapeutic candidatetherapeutic targettherapeutically effective
项目摘要
PROJECT SUMMARY/ABSTRACT
Our long-term goal is to develop small-molecule therapies for heart failure (HF) that target the cardiac
sarcoplasmic reticulum calcium-ATPase (SERCA). SERCA plays an essential role in normal cardiac function,
clearing cytosolic calcium needed to relax muscle cells in each heart beat (diastole). A key molecular dysfunction
in HF usually involves insufficient SERCA expression, leading to SERCA inactivation and impaired calcium
transport in the cardiomyocyte. SERCA is now widely recognized as a therapeutic target, and its activation results
in improved cardiac function in HF models. Therefore, we propose to develop small-molecule SERCA activators
directed at the myocyte as an effective therapeutic approach for restoring normal function in the failing heart.
This is innovative because discovery of pharmacologically viable SERCA activators would represent a major
breakthrough in therapies for heart failure, as it deviates from known current therapeutic options. We recently
discovered and validated HF600, a high-quality hit that activates SERCA and stimulates intracellular calcium
transport in human iPSC cardiomyocytes. We now intensify our collaboration and propose a flexible, fast and
cost-effective drug development strategy beyond the typical discovery of hit molecules to generate novel
pharmacologically viable molecules. Our central hypothesis is that hit-to-lead optimization around HF600 will
produce novel therapeutic candidates for the pharmacological treatment of HF. Three specific aims will be
pursued in this project to test this hypothesis: (1) design in the computer and synthesize series of
pharmacologically viable SERCA activators built around the hit molecule HF600; (2) evaluate the functional
activity of SERCA activators in situ, and in both human iPSC cardiomyocytes and animal-derived adult ventricular
myocytes; and (3) determine therapeutic efficacy, safety and pharmacokinetics of SERCA activators.
Therapeutic efficacy of small-molecule candidates will be tested using diseased iPSC cardiomyocytes (patient-
derived and induced); SERCA activators will be evaluated through iPSC safety screening and pharmacokinetics
studies. We now have extensive preliminary data showing that a new SERCA activator we built around HF600
reverses calcium mishandling in the diseased cardiomyocyte, and also protects it against arrhythmia with no
apparent long-term cardiotoxicity. This excellent preliminary data provides mechanistic proof-of-principle for
activating SERCA for HF therapy. Our outstanding multidisciplinary team and highly complementary approaches
on a validated pharmacological target ensure successful discovery of novel candidates for the pharmacological
treatment of patients with heart failure.
项目概要/摘要
我们的长期目标是开发针对心脏功能的心力衰竭 (HF) 小分子疗法
肌浆网钙-ATP 酶 (SERCA)。 SERCA 在正常心脏功能中发挥着重要作用,
清除每次心跳(舒张期)时放松肌肉细胞所需的胞质钙。关键分子功能障碍
心力衰竭通常涉及 SERCA 表达不足,导致 SERCA 失活和钙离子受损
心肌细胞内的运输。 SERCA现已被广泛认为是治疗靶点,其激活结果
改善心力衰竭模型的心脏功能。因此,我们建议开发小分子SERCA激活剂
针对肌细胞作为恢复衰竭心脏正常功能的有效治疗方法。
这是创新性的,因为药理学上可行的 SERCA 激活剂的发现将代表一个重大的进展。
心力衰竭治疗的突破,因为它偏离了当前已知的治疗方案。我们最近
发现并验证了 HF600,这是一种高品质的热门产品,可激活 SERCA 并刺激细胞内钙
人 iPSC 心肌细胞中的转运。我们现在加强合作并提出灵活、快速和
经济有效的药物开发策略超越了典型的命中分子发现,以产生新的
药理学上可行的分子。我们的中心假设是,围绕 HF600 的命中引导优化将
产生用于心力衰竭药物治疗的新候选治疗药物。将实现三个具体目标
本项目旨在检验这一假设:(1)在计算机中设计并合成一系列
围绕命中分子 HF600 构建的药理学上可行的 SERCA 激活剂; (2) 功能评价
SERCA 激活剂的原位活性以及在人 iPSC 心肌细胞和动物来源的成人心室中的活性
肌细胞; (3) 确定 SERCA 激活剂的治疗效果、安全性和药代动力学。
小分子候选物的治疗效果将使用患病的 iPSC 心肌细胞(患者-
派生和诱导); SERCA 激活剂将通过 iPSC 安全筛选和药代动力学进行评估
研究。我们现在拥有大量初步数据,表明我们围绕 HF600 构建了一种新的 SERCA 激活器
逆转患病心肌细胞中钙的错误处理,并保护其免受心律失常的影响
明显的长期心脏毒性。这个出色的初步数据为
激活 SERCA 进行 HF 治疗。我们杰出的多学科团队和高度互补的方法
基于经过验证的药理学靶标,确保成功发现新的药理学候选药物
心力衰竭患者的治疗。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A novel machine learning-based screening identifies statins as inhibitors of the calcium pump SERCA.
一种新颖的基于机器学习的筛选将他汀类药物识别为钙泵 SERCA 的抑制剂。
- DOI:
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Cruz;Velasco;Fernández;Guerrero;Aguayo;Espinoza
- 通讯作者:Espinoza
An in silico pipeline for the discovery of multitarget ligands: A case study for epi-polypharmacology based on DNMT1/HDAC2 inhibition.
用于发现多靶点配体的计算机管道:基于 DNMT1/HDAC2 抑制的表观多药理学案例研究。
- DOI:10.1016/j.ailsci.2021.100008
- 发表时间:2021-12-01
- 期刊:
- 影响因子:0
- 作者:F. D. Prieto;Eli de Gortari;J. Medina‐Franco;L.;M. Espinoza
- 通讯作者:M. Espinoza
Linking Biochemical and Structural States of SERCA: Achievements, Challenges, and New Opportunities.
连接 SERCA 的生化和结构状态:成就、挑战和新机遇。
- DOI:
- 发表时间:2020-06-10
- 期刊:
- 影响因子:5.6
- 作者:Aguayo;Espinoza
- 通讯作者:Espinoza
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lennane Michel Espinoza-Fonseca其他文献
Lennane Michel Espinoza-Fonseca的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lennane Michel Espinoza-Fonseca', 18)}}的其他基金
Hit-to-lead optimization for heart failure drug discovery
心力衰竭药物发现的先导化合物优化
- 批准号:
10201740 - 财政年份:2019
- 资助金额:
$ 72.43万 - 项目类别:
Hit-to-lead optimization for heart failure drug discovery
心力衰竭药物发现的先导化合物优化
- 批准号:
9978103 - 财政年份:2019
- 资助金额:
$ 72.43万 - 项目类别:
Molecular mechanisms and regulation of the calcium pump in the heart
心脏钙泵的分子机制和调节
- 批准号:
9152400 - 财政年份:2016
- 资助金额:
$ 72.43万 - 项目类别:
相似海外基金
Modeling heterogeneity of a cancer-signaling cascade using biomimetic cells
使用仿生细胞模拟癌症信号级联的异质性
- 批准号:
9886240 - 财政年份:2019
- 资助金额:
$ 72.43万 - 项目类别:
Hit-to-lead optimization for heart failure drug discovery
心力衰竭药物发现的先导化合物优化
- 批准号:
10201740 - 财政年份:2019
- 资助金额:
$ 72.43万 - 项目类别:
Hit-to-lead optimization for heart failure drug discovery
心力衰竭药物发现的先导化合物优化
- 批准号:
9978103 - 财政年份:2019
- 资助金额:
$ 72.43万 - 项目类别:
Cu Transporting ATPase and Diabetic Vascular Complications
铜转运 ATP 酶与糖尿病血管并发症
- 批准号:
9977232 - 财政年份:2017
- 资助金额:
$ 72.43万 - 项目类别: