Using Machine Learning with Real-World Data to Identify Autism Risk in Children
使用机器学习和真实世界数据来识别儿童自闭症风险
基本信息
- 批准号:10430153
- 负责人:
- 金额:$ 26.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-14 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAgeAlgorithmsAmericanBase RatiosCenters for Disease Control and Prevention (U.S.)ChildClinicClinicalClinical InformaticsCodeDataData SetDatabasesDetectionDevelopmentDiagnosisDiagnosticElectronic Health RecordEvaluationFeeling suicidalFloridaFoundationsFutureGoalsGoldHealth ServicesHealth systemHealthcareInternational Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10)InterventionLatinoLocationLogistic RegressionsLos AngelesMachine LearningMeasuresMethodsModelingNational Institute of Mental HealthNatural Language ProcessingNatural Language Processing pipelineOutcomeParentsPatientsPediatric HospitalsPerformancePhysiciansPopulationPublic HealthROC CurveRandomizedRecordsReportingResearchResearch PersonnelResearch ProposalsReview LiteratureRiskRisk FactorsSamplingSiteStructureTestingTextTrainingTreesTrustUnderserved PopulationValidationWorkagedautism spectrum disorderautistic childrenclinical decision supportclinical diagnosiscohortcomputable phenotypescost effectivedaily functioningdata standardsdeep learning modeldisorder riskeconomic impactelectronic structureethnic disparitygirlsgradient boostinghigh rewardimprovedindexingmachine learning modelphenotyping algorithmphrasespredictive modelingpsychological distressrandom forestrisk prediction modelsexsex disparitysociodemographicsstructured datasupport toolssupport vector machinesurveillance networktoolunstructured data
项目摘要
PROJECT SUMMARY/ABSTRACT
Early and accurate identification of autism spectrum disorder (ASD) is important because ASD interventions
can support positive long-term developmental outcomes, but there is a delay of >2 years between the age
children can reliably be diagnosed and the average age of diagnosis; and 1 in 4 U.S. children aged 8 with ASD
have not been diagnosed. Girls and Latino children are disproportionately impacted by the problem of delayed
diagnosis and under-identification of ASD, in part because clinicians are less likely to recognize ASD risk
factors in them and refer them for an ASD evaluation. Therefore, predicting ASD risk at a population level is
needed to enhance early and accurate detection, particularly in these underserved populations. Researchers
are beginning to harness clinical informatics methods to identify ASD from real-world data in electronic health
records (EHRs), using both structured (e.g., diagnosis codes) and unstructured data (e.g., physician notes).
However, existing algorithms suffer from multiple major flaws, including non-representativeness of training
samples, outdated diagnosis codes and natural language processing (NLP) methods, and a lack of ‘verified’
ASD diagnosis in their gold standard datasets. This proposed research addresses these gaps by developing a
contemporary ASD risk model that uses state-of-the-art machine learning and NLP methods. Using EHR data
from Children’s Hospital Los Angeles (including a gold standard dataset with ‘verified’ ASD diagnoses from the
Boone Fetter Clinic) and the OneFlorida Data Trust (a Florida state-wide EHR database), we will (1) develop a
computable phenotype for ASD using both structured and unstructured EHR data (including parent-reported
ASD discriminators and features associated with ASD that are often found in free text in children’s records),
and (2) develop a machine-learning risk prediction model for ASD. This will lay the foundation for a clinical
decision support tool, to be integrated into EHRs to notify a clinician when a child warrants ASD evaluation.
This has potential to improve ASD identification in all children, but it may particularly benefit girls and Latino
children, reducing sex and ethnic disparities. Further, it will be easily expandable into a ‘next steps’ study to the
overall PCORnet, which provides healthcare to over 24 million children. By using EHRs, this proposal holds
promise for future cost-effective health systems interventions that can help to correct a sociodemographic
‘imbalance’ in ASD research by reaching girls and Latino children at risk for ASD.
项目概要/摘要
早期准确识别自闭症谱系障碍 (ASD) 非常重要,因为 ASD 干预措施
可以支持积极的长期发展成果,但年龄之间存在 >2 年的延迟
儿童能够得到可靠的诊断以及诊断的平均年龄;四分之一的美国 8 岁儿童患有自闭症谱系障碍 (ASD)
女孩和拉丁裔儿童受到延误问题的影响尤为严重。
ASD 的诊断和识别不足,部分原因是新来者不太可能认识到 ASD 风险
因此,在人群水平上预测 ASD 风险是很重要的。
需要加强早期和准确的检测,特别是在这些服务不足的人群中。
开始利用临床信息学方法从电子健康的真实数据中识别 ASD
记录(EHR),使用结构化(例如诊断代码)和非结构化数据(例如医生笔记)。
然而,现有算法存在多个重大缺陷,包括训练的非代表性
样本、过时的诊断代码和自然语言处理(NLP)方法以及缺乏“经过验证的”
这项提出的研究通过开发一个黄金标准数据集中的自闭症谱系障碍诊断来解决这些差距。
当代 ASD 风险模型,使用最先进的机器学习和 NLP 方法,使用 EHR 数据。
来自洛杉矶儿童医院(包括黄金标准数据集,其中包含来自洛杉矶儿童医院的“经过验证的”自闭症谱系障碍诊断)
Boone Fetter Clinic)和 OneFlorida Data Trust(佛罗里达州范围内的 EHR 数据库),我们将 (1) 开发一个
使用结构化和非结构化 EHR 数据(包括家长报告的
自闭症谱系障碍 (ASD) 鉴别器和与自闭症谱系障碍 (ASD) 相关的特征通常可以在儿童记录的自由文本中找到),
(2) 开发 ASD 的机器学习风险预测模型,这将为临床奠定基础。
决策支持工具,将集成到 EHR 中,以便在儿童需要进行 ASD 评估时通知临床医生。
这有可能改善所有儿童的自闭症谱系障碍识别,但它可能特别有利于女孩和拉丁裔
此外,它还可以轻松扩展到“下一步”研究。
总体而言,PCORnet 通过使用 EHR 为超过 2400 万儿童提供医疗保健,该提案成立。
承诺未来具有成本效益的卫生系统干预措施,有助于纠正社会人口统计问题
通过接触有患自闭症谱系障碍风险的女孩和拉丁裔儿童,自闭症谱系障碍研究中出现“不平衡”。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amber M. Angell其他文献
Using Photovoice as a participatory method to identify and strategize community participation with people with intellectual and developmental disabilities
使用 Photovoice 作为一种参与方法来识别智力和发育障碍人士的社区参与并制定策略
- DOI:
10.1080/11038128.2018.1502350 - 发表时间:
2018-09-03 - 期刊:
- 影响因子:1.9
- 作者:
Jenna L Heffron;Natasha A. Spassiani;Amber M. Angell;J. Hammel - 通讯作者:
J. Hammel
Pediatricians’ role in healthcare for Latino autistic children: Shared decision-making versus “You’ve got to do everything on your own”
儿科医生在拉丁美洲自闭症儿童医疗保健中的作用:共同决策与“你必须自己做所有事情”
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:5.2
- 作者:
Amber M. Angell;Olivia J. Lindly;Daniella C Floríndez;L. Floríndez;Leah I. Stein Duker;K. Zuckerman;Larry Yin;O. Solomon - 通讯作者:
O. Solomon
The social life of health records: understanding families' experiences of autism.
健康记录的社会生活:了解自闭症家庭的经历。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Amber M. Angell;O. Solomon - 通讯作者:
O. Solomon
Prevalence of physical and mental health conditions in Medicare-enrolled, autistic older adults
参加医疗保险的自闭症老年人身心健康状况的患病率
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:5.2
- 作者:
Brittany N. Hand;Amber M. Angell;Lauren Harris;L. Carpenter - 通讯作者:
L. Carpenter
‘If I was a different ethnicity, would she treat me the same?’: Latino parents’ experiences obtaining autism services
“如果我是不同种族,她会以同样的方式对待我吗?”:拉丁裔父母获得自闭症服务的经历
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:2.4
- 作者:
Amber M. Angell;O. Solomon - 通讯作者:
O. Solomon
Amber M. Angell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amber M. Angell', 18)}}的其他基金
Using Machine Learning with Real-World Data to Identify Autism Risk in Children
使用机器学习和真实世界数据来识别儿童自闭症风险
- 批准号:
10591514 - 财政年份:2022
- 资助金额:
$ 26.7万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向年龄相关性黄斑变性诊断的迁移学习算法研究
- 批准号:62371328
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于信息年龄的自组网分布式及时信息调度算法研究
- 批准号:62102232
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
异质动态网络上年龄结构传染病模型及算法研究
- 批准号:11701348
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
视网膜年龄相关性黄斑病变OCT图像的三维分割算法研究
- 批准号:61401294
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Sleep and Cardiometabolic Subgroup Discovery and Risk Prediction in United States Adolescents and Young Adults: A Multi-Study Multi-Domain Analysis of NHANES and NSRR
美国青少年和年轻人的睡眠和心脏代谢亚组发现和风险预测:NHANES 和 NSRR 的多研究多领域分析
- 批准号:
10639360 - 财政年份:2023
- 资助金额:
$ 26.7万 - 项目类别:
Pilot Testing Implementation of Suicide Risk Prediction Algorithms to Support Suicide Prevention in Primary Care
试点测试自杀风险预测算法的实施,以支持初级保健中的自杀预防
- 批准号:
10648772 - 财政年份:2023
- 资助金额:
$ 26.7万 - 项目类别:
SCH: Artificial Intelligence enabled multi-modal sensor platform for at-home health monitoring of patients
SCH:人工智能支持的多模式传感器平台,用于患者的家庭健康监测
- 批准号:
10816667 - 财政年份:2023
- 资助金额:
$ 26.7万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 26.7万 - 项目类别:
A mega-analysis framework for delineating autism neurosubtypes
描述自闭症神经亚型的大型分析框架
- 批准号:
10681965 - 财政年份:2023
- 资助金额:
$ 26.7万 - 项目类别: