High-Throughput Automated Patch Clamp System

高通量自动化膜片钳系统

基本信息

项目摘要

ABSTRACT High-throughput electrophysiology is revolutionizing traditional approaches of manual patch clamp to study ion channel function and accelerating the pace of drug discovery. This proposal requests the purchase of a SyncroPatch 384i workstation capable of simultaneous patch clamp measurements on 384 cells. This high- throughput automated electrophysiology system will enable researchers in the Houston-Galveston area to conduct large-scale analysis of ion channel function and screen channel activity modulators. The initial group of users will share this instrument system for diverse projects, funded by 25 individual NIH grants. Two collaborating user labs will apply the SyncroPatch to identify and characterize new channelrhodopsin variants by screening candidates from sequence databases. Channelrhodopsins are light-gated ion channels from eukaryotic microorganisms widely used by neuroscience researchers to control excitability of neurons and myocytes in animal models (optogenetics), and as optogenetic gene therapy in clinical trials to restore vision to the blind. The SyncroPatch will enable high-throughput selection of mutated populations of known channelrhodopsins to optimize and expand their utility. Ion channelopathies are the cause of myriad human diseases that impair brain, cardiac, the immune system, and other functions. Ten proposed users in this application study ion channels with molecular and cellular methods, as well as animal models, to investigate the role of the channels in human diseases and basic biological mechanisms underlying these pathologies. Accordingly, their labs will apply the requested workstation to: (1) screen for novel modulators of voltage-gated Na+ channels, HCN channels, TRP channels, BK channels, the cochlear anion transporter prestin (SLC26A5) and nAChR channels; (2) map the conformational landscape of ionotropic NMDA receptors; (3) identify structure-function determinants of Ca2+ channels; (4) screen modulators of exocytosis; and (5) analyze mutations and post-translational modifications of TRP, ASIC and TPC channels. The acquisition of the SyncroPatch 384i will answer the urgent need for automated high-throughput patch-clamp electrophysiology in the Houston-Galveston biomedical research community and will enable us to interrogate ion channel function at an unprecedented pace, accelerate discoveries of new optogenetic tools and new therapeutics, and thus broaden the horizon of biomedical research and drug development.
抽象的 高通量电生理学正在彻底改变手动膜片钳研究离子的传统方法 通道功能并加快药物发现的步伐。该提案要求购买 SyncroPatch 384i 工作站能够同时对 384 个细胞进行膜片钳测量。这个高 高通量自动化电生理学系统将使休斯顿-加尔维斯顿地区的研究人员能够 对离子通道功能进行大规模分析并筛选通道活性调节剂。初始组为 用户将在不同的项目中共享该仪器系统,该系统由 25 项 NIH 个人拨款资助。两人合作 用户实验室将应用 SyncroPatch 通过筛选来识别和表征新的视紫红质变体 来自序列数据库的候选者。视紫红质通道是来自真核生物的光门控离子通道 神经科学研究人员广泛使用微生物来控制神经元和肌细胞的兴奋性 动物模型(光遗传学),并在临床试验中作为光遗传学基因疗法来恢复盲人的视力。这 SyncroPatch 将能够对已知通道视紫红质的突变群体进行高通量选择,以 优化并扩展其效用。离子通道病是多种损害大脑的人类疾病的原因, 心脏、免疫系统和其他功能。本应用中的十个建议用户研究离子通道 分子和细胞方法以及动物模型,以研究通道在人体中的作用 疾病和这些病理学背后的基本生物学机制。因此,他们的实验室将应用 要求工作站:(1) 筛选电压门控 Na+ 通道、HCN 通道、TRP 的新型调制器 通道、BK 通道、耳蜗阴离子转运蛋白 prestin (SLC26A5) 和 nAChR 通道; (2) 绘制地图 离子型 NMDA 受体的构象景观; (3) 确定Ca2+的结构-功能决定因素 渠道; (4)筛选胞吐作用调节剂; (5) 分析突变和翻译后修饰 TRP、ASIC 和 TPC 通道。收购 SyncroPatch 384i 将满足以下迫切需求: 休斯顿-加尔维斯顿生物医学研究中的自动化高通量膜片钳电生理学 社区,将使我们能够以前所未有的速度询问离子通道功能,加速 新光遗传学工具和新疗法的发现,从而拓宽生物医学研究的视野 和药物开发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JOHN LEE SPUDICH其他文献

JOHN LEE SPUDICH的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JOHN LEE SPUDICH', 18)}}的其他基金

Developing an Optogenetics Technology Based on Natural Potassium-selective Channelrhodopsins
开发基于天然钾选择性通道视紫红质的光遗传学技术
  • 批准号:
    10731153
  • 财政年份:
    2023
  • 资助金额:
    $ 59.9万
  • 项目类别:
Structure/Function of Channelrhodopsins and Related Retinylidene Proteins
视紫红质通道蛋白和相关视黄基蛋白的结构/功能
  • 批准号:
    10380871
  • 财政年份:
    2021
  • 资助金额:
    $ 59.9万
  • 项目类别:
Structure/Function of Channelrhodopsins and Related Retinylidene Proteins
视紫红质通道蛋白和相关视黄基蛋白的结构/功能
  • 批准号:
    10576389
  • 财政年份:
    2021
  • 资助金额:
    $ 59.9万
  • 项目类别:
Structure/Function of Channelrhodopsins and Related Retinylidene Proteins
视紫红质通道蛋白和相关视黄基蛋白的结构/功能
  • 批准号:
    10166003
  • 财政年份:
    2021
  • 资助金额:
    $ 59.9万
  • 项目类别:
Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition
用于光遗传学抑制的天然光门控氯离子通道的分子工程
  • 批准号:
    10677649
  • 财政年份:
    2020
  • 资助金额:
    $ 59.9万
  • 项目类别:
Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition
用于光遗传学抑制的天然光门控氯离子通道的分子工程
  • 批准号:
    10413162
  • 财政年份:
    2020
  • 资助金额:
    $ 59.9万
  • 项目类别:
Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition
用于光遗传学抑制的天然光门控氯离子通道的分子工程
  • 批准号:
    10237959
  • 财政年份:
    2020
  • 资助金额:
    $ 59.9万
  • 项目类别:
Molecular Engineering of Natural Light-Gated Chloride Channels for Optogenetic Inhibition
用于光遗传学抑制的天然光门控氯离子通道的分子工程
  • 批准号:
    10677649
  • 财政年份:
    2020
  • 资助金额:
    $ 59.9万
  • 项目类别:
Channelrhodopsin-Calcium Channel Complexes for Ultrasensitive Optogenetics
用于超灵敏光遗传学的视紫红质通道-钙通道复合物
  • 批准号:
    8359246
  • 财政年份:
    2012
  • 资助金额:
    $ 59.9万
  • 项目类别:
Channelrhodopsin-Calcium Channel Complexes for Ultrasensitive Optogenetics
用于超灵敏光遗传学的视紫红质通道-钙通道复合物
  • 批准号:
    8510730
  • 财政年份:
    2012
  • 资助金额:
    $ 59.9万
  • 项目类别:

相似国自然基金

基于阴离子调控价态转移的光诱导铁催化聚烯烃的C(sp3)−H氧化氮化反应
  • 批准号:
    22371223
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
新型钠基层状氧化物阴离子氧化还原反应的稳定调控机制研究
  • 批准号:
    22379146
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于三维三蝶烯的高性能阴离子交换膜的设计合成及结构与性能关系研究
  • 批准号:
    22365006
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
富锂锰基正极中阴离子氧化还原机制的界面效应研究
  • 批准号:
    22309097
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
手性氢键供体与阴离子结合催化乙烯基醚的立体选择性阳离子聚合
  • 批准号:
    22301279
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Inhibitors of Human Factor XIIIa as New Anticoagulants
人类因子 XIIIa 抑制剂作为新型抗凝剂
  • 批准号:
    10629057
  • 财政年份:
    2023
  • 资助金额:
    $ 59.9万
  • 项目类别:
Tweety proteins: their roles in pericytes and macrophages
Tweety 蛋白:它们在周细胞和巨噬细胞中的作用
  • 批准号:
    10665494
  • 财政年份:
    2023
  • 资助金额:
    $ 59.9万
  • 项目类别:
Modulation of ribosome velocity as a means to rescue refractory CF-causing variants
调节核糖体速度作为拯救难治性 CF 引起的变异的一种手段
  • 批准号:
    10463879
  • 财政年份:
    2021
  • 资助金额:
    $ 59.9万
  • 项目类别:
Modulation of ribosome velocity as a means to rescue refractory CF-causing variants
调节核糖体速度作为拯救难治性 CF 引起的变异的一种手段
  • 批准号:
    10445444
  • 财政年份:
    2021
  • 资助金额:
    $ 59.9万
  • 项目类别:
Viral strategies for bi-directional optogenetic control of specific cell types in neocortex of non-transgenic animals
非转基因动物新皮质中特定细胞类型双向光遗传学控制的病毒策略
  • 批准号:
    10057749
  • 财政年份:
    2020
  • 资助金额:
    $ 59.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了