Systematic elucidation of DNA sequence codes that regulate meiotic recombination
系统阐明调节减数分裂重组的 DNA 序列代码
基本信息
- 批准号:10418872
- 负责人:
- 金额:$ 42.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-10 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AffinityAllelesAneuploidyAnimal ModelBase PairingBindingBinding ProteinsBiologicalBiological AssayBiological ModelsCatalysisChromosome MappingChromosome SegregationCodeComplexCongenital AbnormalityCoupledCouplesDNADNA SequenceDNA biosynthesisDNA sequencingDefectDown SyndromeElementsEtiologyFission YeastFrequenciesGenetic RecombinationGenetic TranscriptionGenetic VariationGenomeGoalsHaploidyHistonesInsectaLengthMass Spectrum AnalysisMeasuresMeiosisMeiotic RecombinationMolecularNatural SelectionsNucleosomesNucleotidesOrganismParentsPathway interactionsPopulationPositioning AttributeProcessProteinsRandomizedRegulationRegulatory ElementResearchResolutionSPO11 geneSamplingSequence-Specific DNA Binding ProteinSiteSpecificitySpontaneous abortionTechnologyTestingVertebratesWorkYeast Model Systemchromatin remodelingdiagnostic valueds-DNAexperimental studyforward geneticsfungusimprovedin vivoinnovationinsightnext generationprecise genome editingsegregationtoolyeast genome
项目摘要
Project Summary
Meiosis couples one round of DNA replication, high-frequency recombination between homologs, and two
rounds of chromosome segregation to produce haploid meiotic products. Meiotic recombination is required for
the proper segregation of homologs in meiosis, and it generates genetic diversity required for the process of
natural selection. Interestingly, meiotic recombination is clustered at “hotspots” that regulate its frequency
distribution throughout the genome. Our model system, fission yeast, led to the discovery that discrete DNA
sequence motifs and their binding proteins position the initiation of recombination at hotspots. They do so by
inducing histone PTMs and nucleosome displacement, which promote locally the catalysis of recombination-
initiating dsDNA breaks by the basal recombination machinery (Spo11/Rec12 complex). The general, DNA site-
dependent mechanisms are conserved between species that diverged about 400 million years ago and are
implicated by association to be even more broadly conserved. Remarkably, a screen of short, randomized DNA
sequences generated by base-pair substitutions in the fission yeast genome—which directly analyzed rates of
meiotic recombination in about 46,000 independent clones—identified 202 distinct, short DNA sequence
elements that activate recombination hotspots. These striking findings suggest the most meiotic recombination,
like most transcription, is positioned and regulated by discrete DNA sites and their binding proteins. However,
only five of the 202 hotspot-activating DNA sequences have been defined functionally at single-nucleotide
resolution, and the binding/activator proteins have only been identified for three of the DNA sites. Our long-term
goal is to define systematically the discrete DNA sites and binding/activator protein codes of meiotic
recombination. First, we will use a newly developed tool called “targeted forward genetics” (TFG), which can
generate more than 100,000 independent allele replacements in a single experiment, to define at single-
nucleotide resolution the discrete DNA sequence motifs required for hotspot activity in vivo. Second, we will use
an approach called “DNA affinity capture with mass spectrometry” (DAC-MS), coupled with a tandem mass
tagging (TMT), triple-stage mass spectrometry (MS3) strategy that can analyze many samples simultaneously,
to identify the candidate binding/activator proteins. Candidates will be validated for DNA site-specific binding
and hotspot activation in vivo. Third, we shall test the hypothesis that the different cis-acting regulatory modules
each promote recombination via a common downstream mechanism that involves chromatin remodeling. This
systematic, multifaceted approach will provide new insight into the mechanisms (and discrete codes) that
position meiotic recombination, which has implications for the etiology of meiotic aneuploidies (e.g., Down's
syndrome), for linkage mapping, and for the evolutionary dynamics of genomes.
项目概要
减数分裂耦合一轮 DNA 复制、同源物之间的高频重组以及两个
产生单倍体减数分裂产物需要多轮染色体分离。
减数分裂中同源物的正确分离,并产生减数分裂过程所需的遗传多样性
自然选择有意地使减数分裂重组聚集在调节其频率的“热点”。
我们的模型系统——裂变酵母,导致了离散DNA的发现。
序列基序及其结合蛋白将重组的起始位置定位在热点处。
诱导组蛋白 PTM 和核小体置换,从而促进局部重组的催化 -
通过基础重组机制(Spo11/Rec12 复合体)启动 dsDNA 断裂。
大约 4 亿年前分化的物种之间的依赖机制是保守的,并且
值得注意的是,短的、随机的 DNA 筛选更广泛地涉及关联。
由裂变酵母基因组中的碱基对替换生成的序列,直接分析了
约 46,000 个独立克隆中的减数分裂重组——鉴定出 202 个不同的短 DNA 序列
这些惊人的发现表明最减数分裂重组。
与大多数转录一样,它是由离散的 DNA 位点及其结合蛋白定位和调节的。
202 个热点激活 DNA 序列中只有 5 个在单核苷酸上进行了功能定义
分辨率,并且我们的长期 DNA 位点仅鉴定出结合/激活蛋白。
目标是系统地定义减数分裂的离散 DNA 位点和结合/激活蛋白代码
首先,我们将使用一种新开发的工具,称为“靶向正向遗传学”(TFG),它可以
在一次实验中生成超过 100,000 个独立的等位基因替换,以定义单次
其次,我们将使用体内热点活性所需的离散 DNA 序列基序的核苷酸分辨率。
一种称为“DNA 亲和捕获质谱法”(DAC-MS) 的方法,与串联质量相结合
标记(TMT),三级质谱(MS3)策略,可以同时分析许多样品,
鉴定候选结合/激活蛋白 将验证候选蛋白的 DNA 位点特异性结合。
第三,我们将检验不同顺式作用调节模块的假设。
每个都通过涉及染色质重塑的共同下游机制促进重组。
系统的、多方面的方法将为机制(和离散代码)提供新的见解。
减数分裂位置重组,这对减数分裂非整倍体的病因学有影响(例如,唐氏
综合征),用于连锁图谱和基因组的进化动力学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wayne P Wahls其他文献
Wayne P Wahls的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wayne P Wahls', 18)}}的其他基金
Systematic elucidation of DNA sequence codes that regulate meiotic recombination
系统阐明调节减数分裂重组的 DNA 序列代码
- 批准号:
10618255 - 财政年份:2022
- 资助金额:
$ 42.32万 - 项目类别:
Combinatoial CREB/ATF dimers and cellular growth control
CREB/ATF二聚体组合和细胞生长控制
- 批准号:
6775629 - 财政年份:2001
- 资助金额:
$ 42.32万 - 项目类别:
REGULATION OF MEIOTIC DEVELOPMENT BY MTS1-MTS2 PROTEIN
MTS1-MTS2 蛋白对减数分裂发育的调节
- 批准号:
6227514 - 财政年份:2001
- 资助金额:
$ 42.32万 - 项目类别:
REGULATION OF MEIOTIC DEVELOPMENT BY MTS1-MTS2 PROTEIN
MTS1-MTS2 蛋白对减数分裂发育的调节
- 批准号:
6682384 - 财政年份:2001
- 资助金额:
$ 42.32万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非洲栽培稻抗稻瘟病基因Pi69(t)的功能等位基因克隆及进化解析
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
Systematic elucidation of DNA sequence codes that regulate meiotic recombination
系统阐明调节减数分裂重组的 DNA 序列代码
- 批准号:
10618255 - 财政年份:2022
- 资助金额:
$ 42.32万 - 项目类别:
Dissecting the function of Nemp1, a nuclear envelope protein critical for mammalian fertility
剖析 Nemp1(一种对哺乳动物生育能力至关重要的核膜蛋白)的功能
- 批准号:
10586929 - 财政年份:2022
- 资助金额:
$ 42.32万 - 项目类别:
Characterizing the Sexually Dimorphic Role of Topoisomerase II During the Sister Chromatid Cohesion Release Pathway.
表征拓扑异构酶 II 在姐妹染色单体凝聚释放途径中的性别二态性作用。
- 批准号:
10536795 - 财政年份:2022
- 资助金额:
$ 42.32万 - 项目类别:
Investigating the biochemical and oncogenic properties of the Ras GTPase RIT1
研究 Ras GTPase RIT1 的生化和致癌特性
- 批准号:
10313360 - 财政年份:2021
- 资助金额:
$ 42.32万 - 项目类别:
Islet Dysregulation in Infants with Congenital Hyperinsulinism
先天性高胰岛素血症婴儿的胰岛失调
- 批准号:
8764054 - 财政年份:2014
- 资助金额:
$ 42.32万 - 项目类别: