Molecular regulation of adipocyte progenitor quiescence and metabolic adaptation to obesity
脂肪细胞祖细胞静止的分子调控和肥胖代谢适应
基本信息
- 批准号:10419976
- 负责人:
- 金额:$ 25.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-17 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqAddressAdipocytesAdipose tissueAdultAffectBindingBiological AssayCRISPR interferenceCRISPR/Cas technologyCaloriesCellsChromatinCoupledCouplingDNADNA Binding DomainDataDevelopmentDevelopmental GeneDiabetes MellitusEnhancersFailureFamilial generalized lipodystrophyFatty acid glycerol estersFutureGenesGenetic TranscriptionGenetic VariationGenomicsGrowthHealthHeterogeneityHyperplasiaHypertrophyImpairmentIn VitroInsulin ResistanceKnowledgeLifeLinkMapsMass Spectrum AnalysisMetabolicMethodologyMethodsModelingMolecularMorbidity - disease rateMusNR4A1 geneNon-Insulin-Dependent Diabetes MellitusObesityOutputPPARG genePathway interactionsPopulationProliferatingProxyPublishingRegulationReporterRiskRoleSorting - Cell MovementSourceStructureTestingTissue ExpansionTissuesTracerWorkadipocyte differentiationage relatedexperimental studyfunctional genomicsgenetic variantgenome-widein vivolipid biosynthesisloss of functionmortalitynetwork modelspreventprogenitorprogramsresponsestable isotopestem cellstranscription factortranscriptomics
项目摘要
Adipose tissue expansion occurs by a combination of new adipocyte formation (resulting in hyperplastic growth) and hypertrophy of existing adipocytes, the relative contributions of which may impact systemic metabolic health. Congenital lipodystrophy due to failed adipocyte development is associated with severe insulin resistance. More subtle impairments in adipogenesis arising from genetic variants in developmental genes also predispose to insulin resistance and Type 2 Diabetes Mellitus. These examples reflect a larger body of data providing a conceptual basis for the hypothesis that metabolic health is dependent on a functional adipocyte population. By leveraging stable isotope tracers with high precision mass spectrometry methods, we have now also identified an age-dependent decline in adipogenesis. Therefore, adipocyte progenitors—the cellular source of new adipocytes—must reside in a state of relative quiescence in mature adipose tissue. Although downstream drivers of adipogenesis are well described, the mechanisms that maintain quiescence of adipocyte progenitors or their proximal transition to proliferate and differentiate, in vivo, remain largely unknown. To address this knowledge gap, we have leveraged transcriptomic data together with genome scale maps of accessible chromatin in freshly isolated primary adipocyte progenitors to model the network of transcription factors responsible for the quiescent state. Our data implicate the orphan nuclear receptor, NR4A1, as a key regulatory node. In vitro and in vivo functional genomics studies have provided additional support for our NR4A1-centric hypothesis: that NR4A1 regulates a transcriptional program that establishes a metabolically deleterious state of quiescence in adipocyte progenitors. These data also provide rationale for two interrelated Specific Aims. In Aim 1, we will test the hypothesis that NR4A1 is a core transcriptional regulator of adipocyte progenitor quiescence. We will use reporter assays, CRISPRi and CRISPR/Cas9 to functionally interrogate NR4A1-DNA regulatory nodes at key adipogenic transcription factors. In Aim 2, we will perform an unbiased interrogation of the NR4A1-depedent chromatin regulatory landscape in adipocyte progenitor cells at genome scale. We will map NR4A1-DNA interactions and co-localize NR4A1 binding with canonical cis-regulatory marks. We will then use low-input genomics methods coupled with NR4A1 gain or loss of function to map the NR4A1 dependent chromatin regulatory landscape and transcriptional output. Collectively, through targeted functional genomics experiments and unbiased genome scale analyses we will test our model of NR4A1 as a master regulator of a gene program controlling progenitor quiescence. Defining fundamental molecular mechanisms that render resident adipocyte progenitor cells quiescent holds promise to identify molecular barriers to adipogenesis and metabolically healthy fat.
脂肪组织扩张是由新脂肪细胞形成(导致增生性生长)和现有脂肪细胞肥大共同作用而发生的,其相对贡献可能会影响全身代谢健康。由于脂肪细胞发育失败而导致的先天性脂肪营养不良与严重的胰岛素抵抗有关。发育基因的遗传变异引起的脂肪生成障碍也容易导致胰岛素抵抗和 2 型糖尿病。这些例子反映了更多的数据,为代谢的假设提供了概念基础。健康取决于功能性脂肪细胞群。通过利用稳定同位素示踪剂和高精度质谱方法,我们现在还发现了脂肪生成的年龄依赖性下降,因此,脂肪细胞祖细胞(新脂肪细胞的细胞来源)必须存在于脂肪细胞中。尽管脂肪生成的下游驱动因素已得到很好的描述,但维持脂肪细胞祖细胞静止或其近端增殖转变的机制。为了解决这一知识空白,我们利用转录组数据以及新鲜分离的原代脂肪细胞祖细胞中可及染色质的基因组规模图来模拟负责静止状态的转录因子网络。表明孤儿核受体 NR4A1 是一个关键的调节节点 体外和体内功能基因组学研究为我们以 NR4A1 为中心的假设提供了额外的支持:NR4A1 调节转录。这些数据还为两个相互关联的具体目标提供了理论基础,我们将测试 NR4A1 是脂肪细胞祖细胞静止的核心转录调节因子的假设。 、CRISPRi 和 CRISPR/Cas9 在关键脂肪形成转录因子中功能性地询问 NR4A1-DNA 调控节点。我们将在基因组规模上对脂肪细胞祖细胞中 NR4A1 依赖性染色质调控景观进行公正的询问。我们将绘制 NR4A1-DNA 相互作用图谱,并将 NR4A1 与典型的顺式调控标记结合进行共定位。结合 NR4A1 功能的获得或丧失来绘制 NR4A1 依赖性染色质调控景观和转录输出的方法。总的来说,通过有针对性的功能基因组学实验和公正的基因组规模分析,我们将测试我们的 NR4A1 模型作为控制祖细胞静止的基因程序的主调节器,定义使驻留脂肪细胞祖细胞静止的基本分子机制有望识别脂肪生成的分子障碍。和代谢健康的脂肪。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Steinhauser其他文献
Matthew Steinhauser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Steinhauser', 18)}}的其他基金
Molecular regulation of adipocyte progenitor quiescence and metabolic adaptation to obesity
脂肪细胞祖细胞静止的分子调控和肥胖代谢适应
- 批准号:
10623240 - 财政年份:2022
- 资助金额:
$ 25.62万 - 项目类别:
Functional evaluation of a new GWAS locus that links visceral adiposity and type 2 diabetes
关联内脏肥胖和 2 型糖尿病的新 GWAS 位点的功能评估
- 批准号:
10044898 - 财政年份:2019
- 资助金额:
$ 25.62万 - 项目类别:
Functional evaluation of a new GWAS locus that links visceral adiposity and type 2 diabetes
关联内脏肥胖和 2 型糖尿病的新 GWAS 位点的功能评估
- 批准号:
10338084 - 财政年份:2019
- 资助金额:
$ 25.62万 - 项目类别:
Stable isotope-based fate mapping to quantify adipogenesis in obesity
基于稳定同位素的命运图谱可量化肥胖中的脂肪生成
- 批准号:
8242402 - 财政年份:2012
- 资助金额:
$ 25.62万 - 项目类别:
Stable isotope-based fate mapping to quantify adipogenesis in obesity
基于稳定同位素的命运图谱可量化肥胖中的脂肪生成
- 批准号:
8397643 - 财政年份:2012
- 资助金额:
$ 25.62万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
p27pTpT drives cancer-promoting inflammation and shapes the tumor microenvironment (TME) toward a more tumor-permissive state in vivo
p27pTpT 驱动促癌炎症,并将肿瘤微环境 (TME) 塑造为更适合体内肿瘤生长的状态
- 批准号:
10744370 - 财政年份:2023
- 资助金额:
$ 25.62万 - 项目类别:
A novel role of cholesterol and SR-BI in adipocyte biology
胆固醇和 SR-BI 在脂肪细胞生物学中的新作用
- 批准号:
10733720 - 财政年份:2023
- 资助金额:
$ 25.62万 - 项目类别:
Multimodal omics approach to identify health to cardiometabolic disease transitions
多模式组学方法确定健康状况向心脏代谢疾病的转变
- 批准号:
10753664 - 财政年份:2023
- 资助金额:
$ 25.62万 - 项目类别:
Molecular mechanisms controlling skin heterogeneity
控制皮肤异质性的分子机制
- 批准号:
10504647 - 财政年份:2022
- 资助金额:
$ 25.62万 - 项目类别: