Quantifying the relationship between 3D genome structure and the genetic architecture of common complex disease

量化 3D 基因组结构与常见复杂疾病遗传结构之间的关系

基本信息

  • 批准号:
    10417135
  • 负责人:
  • 金额:
    $ 4.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2023-05-12
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT The three-dimensional (3D) conformation of the genome plays an integral role in regulating gene expression. The genome folds into megabase-long topologically associating domains (TADs), regions that self-interact, but rarely contact regions outside the domain. TADs modulate gene regulation by restricting interactions of regulatory elements, like enhancers, to their target genes. Disruption of the insulating boundaries between TADs by large-scale rare variants can cause severe developmental phenotypes. However, the relationship between the genetic basis underlying common phenotypes and 3D genome architecture across different cell-types is not understood. Common small-scale (e.g. SNP) variation may change 3D genome structure in a cell-type-specific manner, leading to changes in gene expression and disease risk. As genome-wide association studies (GWAS) become more common, cell-type-specific interpretation of disease-associated variants is essential for mechanistic understanding of disease. This work will examine variation in different 3D contexts across diverse cell-types, quantifying their evolutionary constraint and contribution to common phenotypes. I hypothesize that genetic variation at TAD boundaries contributes more to the burden of common disease than variation in TADs. Furthermore, I hypothesize that disruption of cell-type-specific TAD boundaries contributes to diseases in relevant cell-types. First, 37 cross-cell-type and four cross-species 3D genome maps will be integrated to measure 3D element functional conservation. Comparing different 3D contexts (i.e. TADs and boundaries) across cell-types and species will provide a framework for integrating 3D genome maps into interpretation of disease-associated variants. Second, the relationship between 3D architecture and the genetic architecture of 28 common complex traits will be mapped through partitioned heritability analysis. This will reveal if TAD boundaries have a greater genetic contribution to different common diseases than TADs. Third, cell-type-specific 3D elements will be assessed for cell-type-specific functional effects through enrichment analyses of existing functional annotations and biobank data. This work will enable cell-type-specific and 3D structural-aware variant interpretation by quantifying the relationship between the genetic architecture of disease and 3D genome structure. Furthermore, this project, when combined with rigorous clinical and scientific training, will provide opportunity for interdisciplinary collaboration with experts and mastery of multiple techniques in human genetics, well-equipping me to become a physician-scientist leader in genetics.
项目概要/摘要 基因组的三维 (3D) 构象在调节基因表达中发挥着不可或缺的作用。 基因组折叠成兆碱基长的拓扑关联域(TAD),这是自我相互作用的区域,但是 很少接触域外的区域。 TAD 通过限制相互作用来调节基因调控 调控元件,如增强子,针对其靶基因。破坏之间的绝缘边界 大规模罕见变异引起的 TAD 可能导致严重的发育表型。然而,这种关系 共同表型的遗传基础和跨不同基因组的 3D 基因组结构之间 细胞类型尚不清楚。常见的小规模(例如 SNP)变异可能会改变基因组中的 3D 基因组结构。 细胞类型特异性的方式,导致基因表达和疾病风险的变化。作为全基因组 关联研究(GWAS)变得更加普遍,对疾病相关的细胞类型特异性解释 变异对于理解疾病的机制至关重要。这项工作将检查不同 3D 中的变化 跨不同细胞类型的背景,量化它们的进化限制和对共同的贡献 表型。我假设 TAD 边界处的遗传变异对 常见疾病多于 TAD 变异。此外,我假设细胞类型特异性 TAD 的破坏 边界会导致相关细胞类型的疾病。一、37个跨细胞类型和4个跨物种3D 基因组图谱将被整合以测量 3D 元素功能保护。比较不同的 3D 跨细胞类型和物种的上下文(即 TAD 和边界)将为集成 3D 提供框架 基因组图谱可解释疾病相关变异。二、3D之间的关系 28个常见复杂性状的结构和遗传结构将通过分区进行映射 遗传力分析。这将揭示 TAD 边界是否对不同的共同点有更大的遗传贡献 疾病比 TAD 更严重。第三,将评估细胞类型特异性 3D 元素的细胞类型特异性功能 通过对现有功能注释和生物样本库数据进行富集分析来确定效果。这项工作将使 通过量化细胞类型特异性和 3D 结构感知变异解释 疾病的遗传结构和 3D 基因组结构。此外,该项目与 严格的临床和科学培训,将为与专家进行跨学科合作提供机会 并掌握人类遗传学的多种技术,使我有能力成为一名医师科学家 遗传学领域的领导者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Evonne McArthur其他文献

Evonne McArthur的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Evonne McArthur', 18)}}的其他基金

Quantifying the relationship between 3D genome structure and the genetic architecture of common complex disease
量化 3D 基因组结构与常见复杂疾病遗传结构之间的关系
  • 批准号:
    10179367
  • 财政年份:
    2020
  • 资助金额:
    $ 4.75万
  • 项目类别:

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
  • 批准号:
    10677169
  • 财政年份:
    2023
  • 资助金额:
    $ 4.75万
  • 项目类别:
Loss of transcriptional homeostasis of genes lacking CpG islands during aging
衰老过程中缺乏 CpG 岛的基因转录稳态丧失
  • 批准号:
    10814562
  • 财政年份:
    2023
  • 资助金额:
    $ 4.75万
  • 项目类别:
MetabolGut: a rapid assay platform to evaluate the impact drugs on lipid-handlingpathways and chylomicron-associated drug distribution using stem cell-drivenhuman absorptive enterocytes.
MetabolGut:一个快速检测平台,使用干细胞驱动的人体吸收性肠上皮细胞来评估药物对脂质处理途径和乳糜微粒相关药物分布的影响。
  • 批准号:
    10766493
  • 财政年份:
    2023
  • 资助金额:
    $ 4.75万
  • 项目类别:
A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
  • 批准号:
    10734465
  • 财政年份:
    2023
  • 资助金额:
    $ 4.75万
  • 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
  • 批准号:
    10727940
  • 财政年份:
    2023
  • 资助金额:
    $ 4.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了