Antigen-independent prediction and biomarker identification of cancer-specific T cells
癌症特异性 T 细胞的抗原独立预测和生物标志物鉴定
基本信息
- 批准号:10413251
- 负责人:
- 金额:$ 37.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAmino Acid SequenceAnimal ModelAntigensAutoimmuneAutoimmunityAutologousBRAF geneBindingBiochemicalBiological AssayBiological MarkersCD28 geneCancer PatientCancer cell lineCell LineCell SeparationCellular immunotherapyClassificationClinicalClinical TrialsComputer softwareComputing MethodologiesDataData SetDevelopmentDiagnosisFutureGenesGoalsHLA-A geneHematopoietic stem cellsHumanIL2RA geneImmuneImmune responseImmunodeficient MouseImmunotherapyIndividualInnate Immune SystemLeadMachine LearningMalignant NeoplasmsMelanoma CellMethodsOncogenesOpen Reading FramesOutcomePatientsPost-Translational Protein ProcessingPrognosisSafetySamplingSorting - Cell MovementSourceT-Cell ReceptorT-LymphocyteTestingTissue-Specific Gene ExpressionTissuesTrainingTreatment EfficacyTumor AntigensTumor ExpansionTumor stageUmbilical Cord BloodValidationXenograft procedureanti-canceranticancer treatmentantigen bindingantigen-specific T cellsbasebiomarker identificationcancer biomarkerscancer cellcancer diagnosiscancer genomicscancer immunotherapyclinical applicationcomplementarity-determining region 3deep learningdesigngag Gene Productsgenetic signaturegenomic datahumanized mouseimprovedin vivolearning strategymachine learning methodneoantigensneoplastic cellnovelperipheral bloodpredictive markerreceptorreconstitutionresponseside effectsingle cell sequencingsingle-cell RNA sequencingsoftware developmentsuccesstherapy developmenttooltranscriptometranscriptome sequencingtumortumor immunologytumor microenvironmentunsupervised learning
项目摘要
Project Summary/Abstract
Cancer immunotherapy has achieved remarkable clinical success treating late-stage tumors, yet the response
rates remain low and the side effects are often severe. Designing effective immunotherapies relies on accurate
identification of tumor-reactive T cells. This is an extremely difficult task because 1) most of the cancer
antigens are unknown; 2) the majority of the tumor-infiltrating T cells (TIL) does not recognize cancer cells; and
3) without known antigens, the only approach to acquire such T cells is to perform ex vivo expansion of TILs
stimulated by autologous cancer cells, which generates non-specific T cells and is infeasible to many patients.
Nonetheless, this strategy is widely adopted in current clinical trials for anti-cancer treatment, despite its
reduced therapeutic efficacy and unpredictable side effects of autoimmunity. Therefore, unbiased, antigen-
independent identification of tumor-reactive T cells, if possible, will be a major clinical priority as it will
significantly increase the efficiency and safety of T cell based immunotherapies. Here we propose to achieve
this goal through the development of novel machine learning methods. Such approach has not yet been
explored because the fundamental difference between cancer and non-cancer T cells lies in their receptor
sequences (TCR), and training data of cancer-specific TCRs is currently unavailable. To prepare for this task,
we have developed the software TRUST, to extract the T cell antigen-binding CDR3 regions from bulk tumor
RNA-seq data, and the software iSMART to group these CDR3s into antigen-specific clusters. These tools
allowed us to develop a new rationale for producing large training sets of tumor-reactive TCRs, even without
knowing cancer antigens. In our preliminary analysis, we observed that TCRs from the training data can be
matched to tumor antigens that bind to HLA-A*02:01 and elicit immune response in vivo. The cancer-specific
CDR3 amino acid sequences also show significantly different biochemical features from non-cancer ones,
based on which we further developed software DeepCAT to demonstrate the feasibility of de novo prediction of
cancer TCRs. These exciting results highlighted the importance to develop better computational method to
track the tumor-reactive T cells for clinical applications. Accordingly, we propose the following Specific Aims: In
Aim 1, we will deliver a new machine learning method for accurate classification of tumor-reactive T cells using
the CDR3 sequences. In Aim 2, we will derive a set of biomarkers for the cancer-specific T cells for fast and
accurate flow sorting of these T cells from TILs. In Aim 3, we will perform single cell sequencing and functional
validation of cancer-specific T cells using humanized animal model to validate the predicted genes, and to
produce a prioritized list of promising targets for cancer diagnosis, prognosis and therapy development. These
Aims will be accomplished with the great support from the excellent collaborators specialized in cancer
immunology at UTSW. Successful completion of this proposal will provide an exciting new paradigm to identify
tumor-reactive T cells for precision cancer immunotherapies.
项目概要/摘要
癌症免疫疗法在治疗晚期肿瘤方面取得了显着的临床成功,但反应
发生率仍然很低,而且副作用往往很严重。设计有效的免疫疗法依赖于准确的
肿瘤反应性 T 细胞的鉴定。这是一项极其困难的任务,因为 1) 大多数癌症
抗原未知; 2)大多数肿瘤浸润T细胞(TIL)不识别癌细胞;和
3)在没有已知抗原的情况下,获得此类T细胞的唯一方法是进行TIL的离体扩增
由自体癌细胞刺激,产生非特异性 T 细胞,对许多患者来说是不可行的。
尽管如此,该策略在当前的抗癌治疗临床试验中被广泛采用,尽管其效果不佳。
治疗效果降低和自身免疫的不可预测的副作用。因此,公正的、抗原的
如果可能的话,独立鉴定肿瘤反应性 T 细胞将成为主要的临床优先事项,因为它将
显着提高基于 T 细胞的免疫疗法的效率和安全性。这里我们建议实现
通过开发新颖的机器学习方法来实现这一目标。这种方法目前还没有
之所以进行探索,是因为癌症 T 细胞和非癌症 T 细胞的根本区别在于它们的受体
序列(TCR),并且目前无法获得癌症特异性 TCR 的训练数据。为了准备这项任务,
我们开发了软件 TRUST,用于从大块肿瘤中提取 T 细胞抗原结合 CDR3 区域
RNA-seq 数据,以及软件 iSMART 将这些 CDR3 分组为抗原特异性簇。这些工具
使我们能够开发出一种新的原理来生产大量肿瘤反应性 TCR 训练集,即使没有
了解癌症抗原。在我们的初步分析中,我们观察到训练数据中的 TCR 可以是
与结合 HLA-A*02:01 并引发体内免疫反应的肿瘤抗原相匹配。癌症特异性
CDR3氨基酸序列也表现出与非癌症氨基酸序列显着不同的生化特征,
在此基础上我们进一步开发了DeepCAT软件来论证从头预测的可行性
癌症 TCR。这些令人兴奋的结果凸显了开发更好的计算方法的重要性
追踪肿瘤反应性 T 细胞的临床应用。因此,我们提出以下具体目标:
目标 1,我们将提供一种新的机器学习方法,利用该方法对肿瘤反应性 T 细胞进行准确分类
CDR3 序列。在目标 2 中,我们将获得一组癌症特异性 T 细胞的生物标志物,以快速、准确地检测癌症。
从 TIL 中准确流式分选这些 T 细胞。在目标 3 中,我们将进行单细胞测序和功能分析
使用人源化动物模型验证癌症特异性 T 细胞,以验证预测的基因,并
制定癌症诊断、预后和治疗开发有前景目标的优先列表。这些
在癌症领域优秀合作者的大力支持下,目标将得以实现
UTSW 的免疫学。该提案的成功完成将提供一个令人兴奋的新范式来确定
用于精准癌症免疫疗法的肿瘤反应性 T 细胞。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bo Li其他文献
Silver(I)-organic networks constructed with flexible silver-ethynide supramolecular synthon o-, m-, p-Cl-C6H5OCH2C C superset of Ag-n (n=4, 5)
由柔性乙炔银超分子合成子 o-、m-、p-Cl-C6H5OCH2C Ag-n 的 C 超集构建的银 (I)-有机网络 (n=4, 5)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:2.3
- 作者:
Bo Li;Shuang-Quan Zang;Can Ji;Thomas C.W.Mak - 通讯作者:
Thomas C.W.Mak
Bo Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bo Li', 18)}}的其他基金
Mechanisms of unusual enzymes in the biosynthesis of a copper-containing antibiotic
含铜抗生素生物合成中异常酶的机制
- 批准号:
10567957 - 财政年份:2022
- 资助金额:
$ 37.52万 - 项目类别:
Mechanisms of unusual enzymes in the biosynthesis of a copper-containing antibiotic
含铜抗生素生物合成中异常酶的机制
- 批准号:
10830540 - 财政年份:2022
- 资助金额:
$ 37.52万 - 项目类别:
Mechanisms of unusual enzymes in the biosynthesis of a copper-containing antibiotic
含铜抗生素生物合成中异常酶的机制
- 批准号:
10911758 - 财政年份:2022
- 资助金额:
$ 37.52万 - 项目类别:
Mechanisms of unusual enzymes in the biosynthesis of a copper-containing antibiotic
含铜抗生素生物合成中异常酶的机制
- 批准号:
10707436 - 财政年份:2022
- 资助金额:
$ 37.52万 - 项目类别:
Antigen-independent prediction and biomarker identification of cancer-specific T cells
癌症特异性 T 细胞的抗原独立预测和生物标志物鉴定
- 批准号:
10900208 - 财政年份:2020
- 资助金额:
$ 37.52万 - 项目类别:
Antigen-independent prediction and biomarker identification of cancer-specific T cells
癌症特异性 T 细胞的抗原独立预测和生物标志物鉴定
- 批准号:
10248560 - 财政年份:2020
- 资助金额:
$ 37.52万 - 项目类别:
Dithiolopyrrolone Antibiotics: Biosynthesis, Mode of Action and Cellular Function
二硫代吡咯酮抗生素:生物合成、作用方式和细胞功能
- 批准号:
8695588 - 财政年份:2012
- 资助金额:
$ 37.52万 - 项目类别:
Dithiolopyrrolone Antibiotics: Biosynthesis, Mode of Action and Cellular Function
二硫代吡咯酮抗生素:生物合成、作用方式和细胞功能
- 批准号:
8224560 - 财政年份:2012
- 资助金额:
$ 37.52万 - 项目类别:
Dithiolopyrrolone Antibiotics: Biosynthesis, Mode of Action and Cellular Function
二硫代吡咯酮抗生素:生物合成、作用方式和细胞功能
- 批准号:
8720018 - 财政年份:2012
- 资助金额:
$ 37.52万 - 项目类别:
相似国自然基金
模板化共晶聚合合成高分子量序列聚氨基酸
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于祖先序列重构的D-氨基酸解氨酶的新酶设计及分子进化
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
C-末端40个氨基酸插入序列促进细菌脂肪酸代谢调控因子FadR转录效率的机制研究
- 批准号:82003257
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
谷氧还蛋白PsGrx在南极海冰细菌极端生境适应中的功能研究
- 批准号:41876149
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
氨基酸转运蛋白LAT1调控mTOR信号通路对鼻咽癌放射敏感性的影响及其机制研究
- 批准号:81702687
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
AnteroTag, a Novel Method for Trans-Synaptic Delivery of Active Agents to Map and Modify Anterograde Populations
AnteroTag,一种跨突触传递活性剂以绘制和修改顺行群体的新方法
- 批准号:
10258693 - 财政年份:2021
- 资助金额:
$ 37.52万 - 项目类别:
Antigen-independent prediction and biomarker identification of cancer-specific T cells
癌症特异性 T 细胞的抗原独立预测和生物标志物鉴定
- 批准号:
10900208 - 财政年份:2020
- 资助金额:
$ 37.52万 - 项目类别:
Antigen-independent prediction and biomarker identification of cancer-specific T cells
癌症特异性 T 细胞的抗原独立预测和生物标志物鉴定
- 批准号:
10248560 - 财政年份:2020
- 资助金额:
$ 37.52万 - 项目类别:
Project 1: Decoding, Modeling and Targeting Oncohistones and an Oncohistone-like Protein
项目 1:解码、建模和靶向癌组蛋白和癌组蛋白样蛋白
- 批准号:
10269904 - 财政年份:2015
- 资助金额:
$ 37.52万 - 项目类别:
Project 1: Decoding, Modeling and Targeting Oncohistones and an Oncohistone-like Protein
项目 1:解码、建模和靶向癌组蛋白和癌组蛋白样蛋白
- 批准号:
10024843 - 财政年份:2015
- 资助金额:
$ 37.52万 - 项目类别: