Development of a Multi-scale closed loop model for hemorrhagic shock: a platform to assess REBOA performance
失血性休克多尺度闭环模型的开发:评估 REBOA 性能的平台
基本信息
- 批准号:10412269
- 负责人:
- 金额:$ 74.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAbdomenAddressAdoptedAnimal ExperimentationAnimal ModelAnimalsAortaBalloon OcclusionBaroreflexBehaviorBiologicalBiological MarkersBlood VesselsBlood VolumeBlood flowCardiac OutputCardiovascular systemCathetersCessation of lifeChestClinicalComputer ModelsComputer softwareCoupledDevelopmentDevicesDistalEngineeringEnvironmentEvaluationFamily suidaeFeedbackGrowthHemorrhageHemorrhagic ShockHomeostasisInferior vena cava structureInjuryInterventionIschemiaKidneyKidney FailureKnowledgeLiquid substanceMechanicsMethodsMilitary PersonnelModelingOxygenPerformancePerfusionPhasePhysiciansPhysiologicalPre-Clinical ModelPreclinical TestingRenal functionReperfusion InjuryReperfusion TherapyResearchResuscitationRiskScientistShockStentsSumTechniquesTestingTimeTrainingTraumaTraumatic injuryValidationVena Cava FiltersVenousWorkcomputer frameworkcomputerized toolsdesignhemodynamicsimprovedin silicoin vivoindexinginnovationminimally invasivemulti-scale modelingmultidisciplinarynext generationnovelopen sourceoxygen transportporcine modelpressurepreventpreventable deathresponseshear stresssimulation environmenttool
项目摘要
Project Summary
Hemorrhagic shock is the leading cause of preventable death after a traumatic injury, and accounts for 91% of
military and 35% of civilian fatalities after trauma. Injuries to non-compressible intracavity regions, such as the
torso and abdomen, are a major clinical challenge due to a lack of appropriate interventions, and represent 30-
40% of early fatalities. To address this problem, endovascular hemorrhage control (EHC) devices and minimally
invasive techniques such as Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) have been
increasingly adopted. REBOA involves full inflation of a balloon catheter in the aorta, which restricts blood flow
distal to the occlusion and consequently minimizes bleeding. While REBOA is effective at restoring proximal
perfusion, the reductions in blood flow can result in ischemia-reperfusion injuries that increase the risk of
subsequent renal failure. As such, there is a pressing need to identify optimal occlusion size, timing, and duration
of REBOA deployment. To date, these important knowledge gaps are hindered by expensive and time intensive
large animal models that slow the pace of innovation. To address this major gap, we propose to develop and
validate a novel multi-scale computational model that will allow us to simulate the in vivo physiologic response
to hemorrhagic shock. Using a 3D-0D closed loop approach of the cardiovascular system, we will be able to
simulate the critical feedback loops and biologic response functions to render a physiologically relevant model.
These methods have been previously used to inform the design of cardiovascular stents and inferior vena cava
filters, but none to our knowledge have been exploited for the evaluation of REBOA or any other EHC device.
Our central hypothesis is that computational modeling of blood flow within the aorta and systemic vascular
network will generate accurate and robust values for pressure, flow and shear rates within 5% error, closely
mimicking in vivo behavior. The objective is to use this computational framework to: 1) quantify the local and
systemic hemodynamics (i.e., pressure, flow rate, shear stress, oxygen transport, etc.) during phases of active
hemorrhage, aortic occlusion with REBOA, and resuscitation, 2) identify vascular regions that are vulnerable to
ischemic damage as a result of the altered hemodynamics, 3) predict key physiologic responses related to
vascular compliance, oxygen delivery and renal autoregulation during hemorrhage and aortic occlusion, and 4)
determine optimal aortic occlusion size and duration of partial vs. full occlusion strategies to prevent ischemia-
reperfusion injuries and renal failure. Successful development and validation of this in silico model will greatly
contribute to the preclinical testing and optimization of EHC devices, minimizing the need for large animal studies
and also open doors for the study of other transient hemodynamic conditions within the cardiovascular system.
项目概要
失血性休克是创伤性损伤后可预防死亡的主要原因,占创伤性损伤后可预防死亡的 91%
军事人员和 35% 的平民因外伤而死亡,例如腔内不可压缩区域。
由于缺乏适当的干预措施,躯干和腹部是一个主要的临床挑战,代表了 30-
40% 的早期死亡患者需要使用血管内出血控制 (EHC) 装置来解决这一问题。
诸如主动脉复苏性血管内球囊闭塞术 (REBOA) 等侵入性技术
REBOA 涉及主动脉内球囊导管的完全膨胀,从而限制血流。
REBOA 可有效恢复近端闭塞部位,从而最大限度地减少出血。
灌注时,血流量减少可能导致缺血再灌注损伤,从而增加以下风险:
因此,迫切需要确定最佳的闭塞大小、时机和持续时间。
迄今为止,这些重要的知识差距受到昂贵且耗时的阻碍。
大型动物模型减缓了创新的步伐,为了解决这一重大差距,我们建议开发和利用大型动物模型。
验证一种新颖的多尺度计算模型,该模型将使我们能够模拟体内生理反应
使用心血管系统的 3D-0D 闭环方法,我们将能够
模拟关键反馈回路和生物反应函数以呈现生理相关模型。
这些方法以前曾用于指导心血管支架和下腔静脉的设计
过滤器,但据我们所知,尚未用于评估 REBOA 或任何其他 EHC 设备。
我们的中心假设是主动脉和全身血管内血流的计算模型
网络将生成精确且稳健的压力、流量和剪切速率值,误差在 5% 以内,
模仿体内行为的目标是使用该计算框架来:1)量化局部和
活动阶段的全身血流动力学(即压力、流速、剪切应力、氧输送等)
出血、REBOA 主动脉闭塞和复苏,2) 识别易受伤害的血管区域
血流动力学改变导致的缺血性损伤,3) 预测与以下相关的关键生理反应
出血和主动脉闭塞期间的血管顺应性、氧输送和肾脏自动调节,以及 4)
确定最佳主动脉闭塞大小以及部分与完全闭塞策略的持续时间以防止缺血
再灌注损伤和肾衰竭的计算机模型的成功开发和验证将极大地发挥作用。
有助于 EHC 设备的临床前测试和优化,最大限度地减少大型动物研究的需求
也为心血管系统内其他瞬时血流动力学条件的研究打开了大门。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elaheh Rahbar其他文献
Elaheh Rahbar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elaheh Rahbar', 18)}}的其他基金
Development of a Multi-scale closed loop model for hemorrhagic shock: a platform to assess REBOA performance
失血性休克多尺度闭环模型的开发:评估 REBOA 性能的平台
- 批准号:
10669644 - 财政年份:2022
- 资助金额:
$ 74.92万 - 项目类别:
An Integrated Investigation of the Interaction Between PUFAs and Genetic Variants in Trauma and Critical Care
多不饱和脂肪酸与基因变异在创伤和重症监护中相互作用的综合研究
- 批准号:
10348226 - 财政年份:2021
- 资助金额:
$ 74.92万 - 项目类别:
An Integrated Investigation of the Interaction Between PUFAs and Genetic Variants in Trauma and Critical Care
多不饱和脂肪酸与基因变异在创伤和重症监护中相互作用的综合研究
- 批准号:
10222752 - 财政年份:2017
- 资助金额:
$ 74.92万 - 项目类别:
相似国自然基金
面向腹部创伤的超声辅助诊断关键技术研究
- 批准号:62371121
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向小器官精准分割的腹部CT影像多器官分割技术研究
- 批准号:62303127
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
C/EBPZ调控鸡腹部脂肪组织形成的生物学功能和作用机制研究
- 批准号:32360825
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
腹腔巨噬细胞通过IL-16信号通路介导子宫内膜异位症慢性腹部疼痛
- 批准号:32371043
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
具有主动摆动腹部的仿蝴蝶扑翼大机动飞行机理及样机关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
- 批准号:
10585553 - 财政年份:2023
- 资助金额:
$ 74.92万 - 项目类别:
Real-time Volumetric Imaging for Motion Management and Dose Delivery Verification
用于运动管理和剂量输送验证的实时体积成像
- 批准号:
10659842 - 财政年份:2023
- 资助金额:
$ 74.92万 - 项目类别:
Opportunistic Atherosclerotic Cardiovascular Disease Risk Estimation at Abdominal CTs with Robust and Unbiased Deep Learning
通过稳健且公正的深度学习进行腹部 CT 机会性动脉粥样硬化性心血管疾病风险评估
- 批准号:
10636536 - 财政年份:2023
- 资助金额:
$ 74.92万 - 项目类别:
Targeting Fluid Stress-induced Chemoresistance in a 3D Carcinomatosis Perfusion Model Using Mechanism-based Photo-immunoconjugate Nanoparticles
使用基于机制的光免疫缀合物纳米颗粒在 3D 癌病灌注模型中靶向流体应激诱导的化疗耐药性
- 批准号:
10587481 - 财政年份:2023
- 资助金额:
$ 74.92万 - 项目类别:
Rapid Free-Breathing 3D High-Resolution MRI for Volumetric Liver Iron Quantification
用于体积肝铁定量的快速自由呼吸 3D 高分辨率 MRI
- 批准号:
10742197 - 财政年份:2023
- 资助金额:
$ 74.92万 - 项目类别: