Accelerating discovery of the human foveal microconnectome with deep learning
通过深度学习加速人类中心凹微连接组的发现
基本信息
- 批准号:10411154
- 负责人:
- 金额:$ 109.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAge related macular degenerationAgingAmazeApicalArtificial IntelligenceBrainBrain DiseasesCellsCellular MorphologyCentral Nervous System DiseasesClinicalCollaborationsColorColor VisionsComplexComputer softwareConeCytoplasmDataDevelopmentDiabetic RetinopathyDiagnostic ImagingDietary ComponentDiseaseElectron MicroscopyEyeFloorForm PerceptionFunctional disorderFutureGoalsHumanImageIndustryIon ChannelLeadLicensingLinkMachine LearningManualsMeasuresMediatingMembraneMethodsModelingMotionMuller&aposs cellMusNeocortexNervous system structureNeuraxisNeurobiologyNeurodegenerative DisordersNeurogliaNeuronsNeurophysiology - biologic functionNeurosciencesOphthalmologyOrgan DonorOrganellesOutcomeOutputPhotoreceptorsPigmentsPlayProcessRecoveryResearchRetinaRetinal ConeRetinal DiseasesRodRoleShort Interspersed Nucleotide ElementsSignal TransductionSoftware ToolsSpatial DistributionStructureStructure of retinal pigment epitheliumSupporting CellSurfaceSynapsesSystemTechniquesTechnologyTestingTimeTissuesVisionVisualVisual PathwaysXanthophyllsautomated segmentationbasecell typeclinical diagnosticsclinical imagingconvolutional neural networkcostdata visualizationdeep learningdeep learning modeldensitydisease diagnosisflyfovea centralisinnovationlearning strategymicroscopic imagingnanoscaleneural circuitnovelpostsynapticpreservationpresynapticrapid techniquereconstructionrelating to nervous systemretinal imagingretinal neuronsoftware developmentsystems researchtoolvision science
项目摘要
Project Summary
The human retina is one of the most complex microcircuits of the central nervous system (CNS) and is a model
of CNS neurodegenerative disease with unique advantages for microconnectomics technology advancement.
The central retina or fovea mediates high acuity vision, drives activity in half of the brain, and is a critical locus
for prevalent blinding disease. The fovea is small (<1 mm), accessible, and relevant to CNS disease diagnosis
through advanced cellular-level clinical imaging. The full foveal microconnectome comprises both the diverse
neural circuits that create parallel visual pathways as well as complex microconnectivity with two specialized
cell types of neuroectodermal origin, the retinal pigment epithelium (RPE) and the Müller glia. Our group has
pioneered ultra-short recovery times of eyes from organ donors, to create exquisitely preserved retinal tissue
volumes suitable for the first microconnectomic analysis of an intensively investigated human CNS structure.
The goal of this proposal is to accelerate the human foveal microconnectome by refining and augmenting a
highly successful and professionally supported software platform, Dragonfly by Object Research Systems
(ORS), an industry leader in implementation of deep learning methods for auto-segmentation of complex
structure. Our collaboration with ORS will target development of deep learning (DL) models as well as
annotation and proofreading tools that will have broad applicability to neuroscience microconnectomics. In
preliminary studies we discovered that RPE cells give rise to extremely dense neural-like projections to
photoreceptor cells and that foveal Müller glia similarly have a specialized and complex relationship to foveal
microcircuits. Moreover, single foveal cone photoreceptors were presynaptic to dozens of parallel visual
circuits of extreme complexity. To advance understanding of these complex microconnectomes ORS will
augment fast auto-segmentation using newly developed convolutional neural networks and refine sophisticated
tools for rapid annotation, proofreading, data visualization, and quantitative analysis. In Aims 1 and 2 we will
develop complete deep learning models of the human RPE cell-neuronal microconnectome and the Müller cell-
neuronal microconnectome respectively that will transform our understanding of the critical roles these cell
types play in foveal function and disease. In Aim 3 we will develop a deep learning model of the multiple neural
cell types and microconnectome of parallel visual pathways for form, color, and motion vision. The major
outcome will be the transformation of a powerful, widely used, professionally supported, DL-based platform for
broad application to neuroscience microconnectomics, free for academic research via a no-cost license. The
ORS-Dragonfly platform will accelerate microconnectomics of complex CNS circuitry and impact systems
neuroscience, human neuro-pathophysiology, and interpretation of cellular-level clinical imaging. This proposal
combines expertise and innovation in neurobiology, vision science, clinical ophthalmology and connectomics,
with DL software development and application.
项目概要
人类视网膜是中枢神经系统(CNS)最复杂的微电路之一,是一个模型
中枢神经系统退行性疾病的研究对于微连接组学技术的进步具有独特的优势。
中央视网膜或中央凹介导高敏锐度视力,驱动一半大脑的活动,是一个关键部位
对于常见的致盲疾病,中央凹很小(<1毫米),易于接近,并且与中枢神经系统疾病诊断相关。
通过先进的细胞水平临床成像,完整的中心凹微连接组包括不同的部分。
神经回路创建并行的视觉通路以及复杂的微连接与两个专门的
我们小组有神经外胚层来源的细胞类型,视网膜色素上皮(RPE)和米勒神经胶质细胞。
开创了器官捐献者眼睛超短恢复时间的先河,创造出保存完好的视网膜组织
适合对深入研究的人类中枢神经系统结构进行首次微连接组分析的体积。
该提案的目标是通过细化和增强人类中心凹微连接组来加速人类中心凹微连接组的发展。
非常成功且专业支持的软件平台,Object Research Systems 的 Dragonfly
(ORS),实施自动分割复杂性的深度学习方法的行业领导者
我们与 ORS 的合作将针对深度学习 (DL) 模型以及开发。
注释和校对工具将广泛适用于神经科学微连接组学。
初步研究我们发现 RPE 细胞产生极其密集的神经样投射
感光细胞和中央凹米勒神经胶质细胞同样与中央凹有特殊而复杂的关系
此外,单个中心凹锥光感受器突触前有数十个平行视觉。
为了加深对这些复杂微连接体的理解,ORS 将
使用新开发的卷积神经网络增强快速自动分割并完善复杂的
在目标 1 和 2 中,我们将提供用于快速注释、校对、数据可视化和定量分析的工具。
开发人类 RPE 细胞神经元微连接组和 Müller 细胞的完整深度学习模型
每个神经微连接组都将改变我们对这些细胞关键作用的理解
在目标 3 中,我们将开发多神经元的深度学习模型。
形状、颜色和运动视觉的平行视觉通路的细胞类型和微连接组。
结果将是一个强大的、广泛使用的、专业支持的、基于深度学习的平台的转变
广泛应用于神经科学微连接组学,通过免费许可证免费用于学术研究。
ORS-Dragonfly 平台将加速复杂中枢神经系统电路和影响系统的微连接组学
神经科学、人类神经病理生理学以及细胞水平临床成像的解释。
结合了神经生物学、视觉科学、临床眼科和连接组学方面的专业知识和创新,
深度学习软件开发和应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DENNIS MICHAEL DACEY其他文献
DENNIS MICHAEL DACEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DENNIS MICHAEL DACEY', 18)}}的其他基金
Synaptic Architecture and Mechanisms of Direction Selectivity in Primate Retina
灵长类视网膜突触结构和方向选择性机制
- 批准号:
10321204 - 财政年份:2021
- 资助金额:
$ 109.99万 - 项目类别:
Synaptic Architecture and Mechanisms of Direction Selectivity in Primate Retina
灵长类视网膜突触结构和方向选择性机制
- 批准号:
10525244 - 财政年份:2021
- 资助金额:
$ 109.99万 - 项目类别:
Synaptic Architecture and Mechanisms of Direction Selectivity in Primate Retina
灵长类视网膜突触结构和方向选择性机制
- 批准号:
10093434 - 财政年份:2021
- 资助金额:
$ 109.99万 - 项目类别:
ANATOMY AND PHYSIOLOGY OF THE LARGE BISTRATIFIED GANGLION CELL
大双层神经节细胞的解剖学和生理学
- 批准号:
8357625 - 财政年份:2011
- 资助金额:
$ 109.99万 - 项目类别:
PHYSIOLOGY OF MACAQUE HORIZONTAL CELLS: THEIR ROLE IN SPATIAL AND COLOR VISION
猕猴水平细胞的生理学:它们在空间和色觉中的作用
- 批准号:
8357581 - 财政年份:2011
- 资助金额:
$ 109.99万 - 项目类别:
CIRCUITRY OF THE MIDGET AND PARASOL RECEPTIVE FIELD
侏儒和阳伞接受区的电路
- 批准号:
8357582 - 财政年份:2011
- 资助金额:
$ 109.99万 - 项目类别:
相似国自然基金
ALKBH5通过SHP-1调控视网膜色素上皮细胞铁死亡在年龄相关性黄斑变性中的作用机制研究
- 批准号:82301213
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
菊花多元组分通过调控肠道菌群结构及内源性代谢改善年龄相关性黄斑变性作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
丹参酸A通过铁代谢途径对干性年龄相关性黄斑变性中铁死亡的保护作用及机制研究
- 批准号:82004428
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
HTRA1通过调控RPE细胞脂质代谢介导年龄相关性黄斑变性中玻璃膜疣形成的机制研究
- 批准号:82000915
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
淀粉样蛋白β通过PU.1调控线粒体功能蛋白的启动子甲基化导致视网膜色素上皮细胞损伤机制研究
- 批准号:81900871
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Improving rigor and reproducibility in adaptive optics ophthalmoscopy
提高自适应光学检眼镜的严谨性和可重复性
- 批准号:
10441310 - 财政年份:2020
- 资助金额:
$ 109.99万 - 项目类别:
Improving rigor and reproducibility in adaptive optics ophthalmoscopy
提高自适应光学检眼镜的严谨性和可重复性
- 批准号:
10653020 - 财政年份:2020
- 资助金额:
$ 109.99万 - 项目类别:
Oral metformin for non-neovascular age-related macular degeneration
口服二甲双胍治疗非新生血管性年龄相关性黄斑变性
- 批准号:
10040399 - 财政年份:2020
- 资助金额:
$ 109.99万 - 项目类别:
Improving rigor and reproducibility in adaptive optics ophthalmoscopy
提高自适应光学检眼镜的严谨性和可重复性
- 批准号:
10225630 - 财政年份:2020
- 资助金额:
$ 109.99万 - 项目类别:
Oral metformin for non-neovascular age-related macular degeneration
口服二甲双胍治疗非新生血管性年龄相关性黄斑变性
- 批准号:
10223316 - 财政年份:2020
- 资助金额:
$ 109.99万 - 项目类别: