High SNR Functional Brain Imaging using Oscillating Steady State MRI
使用振荡稳态 MRI 进行高信噪比功能性脑成像
基本信息
- 批准号:10409769
- 负责人:
- 金额:$ 54.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-30 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAgingAlzheimer&aposs DiseaseAreaBiological MarkersBloodBrainBrain imagingBrain regionCardiacCommunitiesCortical ColumnDataDevelopmentDiffusionElectronicsFunctional Magnetic Resonance ImagingFutureGoalsGrantHeadImageImaging TechniquesIndividualInvestmentsLanguageLinkMagnetic Resonance ImagingMajor Depressive DisorderMeasuresMental disordersMethodsModelingMorphologic artifactsMotionNatureNeurosciences ResearchNoiseOutputPhysicsPhysiologic pulsePhysiologicalPopulation StudyPredispositionProcessPropertyRF coilReproducibilityResolutionRespirationRestSamplingSignal TransductionSiteSliceSourceSpeedStructureSystemTechnologyTimeWeightbasecognitive neurosciencecognitive processcostdensityhuman subjectimage reconstructionimaging approachimaging modalityimprovedinstrumentationmagnetic fieldnervous system disorderneuroimagingnovelnovel strategiesphysiologic modelprogression markerprospectivepublic health relevancereconstructionrespiratoryspatiotemporaltemporal measurementtool
项目摘要
Project Summary: High SNR Functional Brain Imaging using Oscillating Steady State MRI
Functional brain imaging using MRI (functional MRI or fMRI) has grown rapidly over the past 25 years and is
widely used for basic cognitive neuroscience research and for presurgical planning. It is increasingly being
used for developing biomarkers for neurological and psychiatric disorders and for population based studies of,
for example, normal and abnormal development and aging. There have also been developments in imaging
hardware and methods as well as processing methods to correct for artifacts and analyze functional activity.
The overarching goal of this project is to develop a novel whole-brain fMRI acquisition approach that improves
the SNR by 2- to 3-fold in comparison to the current leading methods. Such a boost is roughly equivalent to
the SNR gain one achieves in going from 3T to 7T, but without the additional costs. Our goal is to provide
rapid, high SNR, sub-millimeter resolution images with very good temporal resolution. Our approach is
fundamentally different that nearly all standard fMRI methods in that is uses a newly discovered source of
signal for fMRI that is based on an oscillating steady state approach which reuses magnetization and thus,
improves the signal strength. This signal is shown to have contrast weighting that is similar to standard fMRI
methods. The oscillations are very reproducible, which will allow the use of model based reconstructions, for
example low-rank (LR) methods. A novel LR tensor and acquisition approach based on with a golden-angle
rotated variable density acquisition is proposed that, in preliminary data, show a 17-fold speed-up with very low
error rates. Together, these methods promise to dramatically improve the signal-to-noise ratio (SNR) of fMRI
and allow for higher spatial resolution.
The project has four main aims: (1) Analyze and simulate the spin physics of the OSS signal to elucidate the
nature of this signal and obtain optimally sensitive and robust acquisition parameters, (2) Develop optimal
image acquisition and reconstruction methods for OSS fMRI acquisition. The acquisition and reconstruction
strategies are necessarily linked and are unique to the OSS approach, (3) Develop and evaluate methods to
address several well-recognized issues associated with fMRI acquisition, notably physiological noise and head
motion, and (4) Evaluate the OSS fMRI approach in comparison to state-of-the-art simultaneous multislice
(SMS) acquisition methods in phantoms and in human subjects using both task and resting state fMRI.
The proposed technology will greatly improve the SNR and spatial resolution for a given set of hardware (main
magnetic field strength, RF coils arrays). Higher SNR will allow for more robust fMRI in individual subject,
while spatial resolution is important as the functional units (cortical columns) of the brain are 1-2mm and
similarly, functionally distinct layers are sub-mm with the distances from input and output layers being about
1mm. Since the methods do not relay on any unique hardware, the method can be widely and quickly
disseminated to the neuroimaging community.
项目摘要:使用振荡稳态 MRI 进行高信噪比功能性脑成像
使用 MRI 的功能性脑成像(功能性 MRI 或 fMRI)在过去 25 年中发展迅速,并且
广泛用于基础认知神经科学研究和术前计划。它越来越被
用于开发神经和精神疾病的生物标志物以及基于人群的研究,
例如,正常和异常的发育和衰老。成像技术也取得了进展
用于纠正伪影和分析功能活动的硬件和方法以及处理方法。
该项目的总体目标是开发一种新颖的全脑功能磁共振成像采集方法,以改善
与当前领先方法相比,SNR 提高了 2 至 3 倍。这样的提升大致相当于
从 3T 到 7T 可以获得 SNR 增益,但无需额外成本。我们的目标是提供
快速、高信噪比、亚毫米分辨率图像,具有非常好的时间分辨率。我们的方法是
几乎所有标准功能磁共振成像方法都使用新发现的来源,这是根本不同的。
fMRI 信号基于重复使用磁化的振荡稳态方法,因此,
提高信号强度。该信号显示出与标准功能磁共振成像类似的对比加权
方法。振荡具有很强的可重复性,这将允许使用基于模型的重建,
低秩(LR)方法示例。一种基于黄金角的新型LR张量及采集方法
提出了旋转可变密度采集,在初步数据中,显示出 17 倍的加速,并且非常低
错误率。这些方法共同有望显着提高功能磁共振成像的信噪比 (SNR)
并允许更高的空间分辨率。
该项目有四个主要目标:(1)分析和模拟 OSS 信号的自旋物理,以阐明
该信号的性质并获得最佳灵敏度和稳健的采集参数,(2) 开发最佳
OSS fMRI 采集的图像采集和重建方法。收购与重建
战略是必然相关的,并且是 OSS 方法所独有的,(3) 开发和评估方法
解决与功能磁共振成像采集相关的几个公认的问题,特别是生理噪声和头部
(4) 与最先进的同步多层切片相比评估 OSS fMRI 方法
(SMS) 使用任务和静息状态功能磁共振成像在体模和人类受试者中的采集方法。
所提出的技术将极大地提高给定硬件集的信噪比和空间分辨率(主要
磁场强度、射频线圈阵列)。更高的信噪比将允许对个体受试者进行更稳健的功能磁共振成像,
而空间分辨率很重要,因为大脑的功能单元(皮质柱)为 1-2 毫米,
类似地,功能不同的层是亚毫米,距输入层和输出层的距离约为
1毫米。由于该方法不依赖于任何独特的硬件,因此该方法可以广泛且快速地推广
传播到神经影像界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DOUGLAS C NOLL其他文献
DOUGLAS C NOLL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DOUGLAS C NOLL', 18)}}的其他基金
High SNR Functional Brain Imaging using Oscillating Steady State MRI
使用振荡稳态 MRI 进行高信噪比功能性脑成像
- 批准号:
10190940 - 财政年份:2018
- 资助金额:
$ 54.14万 - 项目类别:
High SNR Functional Brain Imaging using Oscillating Steady State MRI
使用振荡稳态 MRI 进行高信噪比功能性脑成像
- 批准号:
9789877 - 财政年份:2018
- 资助金额:
$ 54.14万 - 项目类别:
MRI Parallel Excitation for Neuroimaging Applications
用于神经影像应用的 MRI 并行激励
- 批准号:
8013511 - 财政年份:2008
- 资助金额:
$ 54.14万 - 项目类别:
MRI Parallel Excitation for Neuroimaging Applications
用于神经影像应用的 MRI 并行激励
- 批准号:
7544894 - 财政年份:2008
- 资助金额:
$ 54.14万 - 项目类别:
MRI Parallel Excitation for Neuroimaging Applications
用于神经影像应用的 MRI 并行激励
- 批准号:
7758259 - 财政年份:2008
- 资助金额:
$ 54.14万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
- 批准号:
10734465 - 财政年份:2023
- 资助金额:
$ 54.14万 - 项目类别:
Examining the Role of Social Connection in Suicide Risk for Older Autistic Adults: A Mixed Methods Study
检查社会联系在老年自闭症成人自杀风险中的作用:一项混合方法研究
- 批准号:
10727637 - 财政年份:2023
- 资助金额:
$ 54.14万 - 项目类别:
Loss of transcriptional homeostasis of genes lacking CpG islands during aging
衰老过程中缺乏 CpG 岛的基因转录稳态丧失
- 批准号:
10814562 - 财政年份:2023
- 资助金额:
$ 54.14万 - 项目类别:
Mitochondrial dysfunction and tau pathology in Alzheimer's disease
阿尔茨海默病中的线粒体功能障碍和 tau 病理学
- 批准号:
10805120 - 财政年份:2023
- 资助金额:
$ 54.14万 - 项目类别:
Deep learning for prediction of Mild Cognitive Impairment and Dementia of the Alzheimer's type
深度学习预测轻度认知障碍和阿尔茨海默氏症型痴呆
- 批准号:
10662094 - 财政年份:2023
- 资助金额:
$ 54.14万 - 项目类别: