An Autonomous, Non-invasive, and Bioanalytics-enabled Wearable Platform for Precision Nutrition and Personalized Medicine
用于精准营养和个性化医疗的自主、非侵入性且支持生物分析的可穿戴平台
基本信息
- 批准号:10408784
- 负责人:
- 金额:$ 19.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-24 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAlgorithmsBiological MarkersBloodClinicalClinical EngineeringClinical ResearchComplexCystic FibrosisData AnalyticsData SetDevelopmentDevicesDietary InterventionDiseaseDisease ManagementEngineeringGeneral PopulationGlucoseHealthHourIn SituIndividualInfluentialsInheritedIntakeIontophoresisMachine LearningMeasuresMetabolic DiseasesMethodologyMicrofluidicsMissionModalityModelingMonitorNutrientNutritional SupportNutritional statusPeriodicityPersonal SatisfactionPhasePhysiologicalPhysiologyPositioning AttributeRandomizedReadingSamplingSodium ChlorideStudy SubjectSweat GlandsSweat testSystemTechnologyTriglyceridesValidationWorkbasebeta-Hydroxybutyratecofactorcohortcystic fibrosis patientsdietary supplementseffective therapyexperimental studyhuman subjectmachine learning algorithmmicrosensormultidisciplinaryoperationpersonalized medicineprecision nutritionpredictive modelingrecruitremote patient monitoringresponsesensorsuccesstargeted biomarkertranslational applicationswearable devicewearable platform
项目摘要
Project Summary
This proposal aims to enable precision nutrition by creating a wearable technology that can be scaled across
the general population to non-invasively track the diurnal profiles of a panel of putative circulating nutrients and
biomarkers. Accordingly, we will address fundamental and intermeshed engineering bottlenecks and scientific
questions at sensor, device, and data analytics levels to realize a sweat-based wearable bioanalytical
technology, equipped with autonomous sweat secretion modulation, biofluid management, and analysis
capabilities. To illustrate our technology’s transformative potential, we will particularly position it to monitor a
panel of nutrients and indicators of the metabolic and disease state that are relevant in cystic fibrosis (CF, the
most common inherited multisystemic disorder), in order to enable individualized nutritional support, which is
central to the CF treatment.
Accordingly, in the first phase (R21), we will develop microsensor arrays targeting glucose, triglyceride, and β-
hydroxybutyrate. We will incorporate our readily developed auxiliary sensing modalities (sweat sodium, chloride,
pH, and sweat secretion rate sensing interfaces) to enable the in-situ characterization of the secretion profile
(which is useful for the normalization of sweat readings and tracking of the CF progression). In parallel to these
engineering efforts, we will conduct sweat characterization experiments to study the effect of the secretion rate
on analyte partitioning from blood into sweat. These datasets will be augmented with state-of-art machine
learning algorithms to formulate a dedicated analytical framework that accounts for sweat secretion variabilities
and determines optimal sweat secretion condition(s) to provide undistorted and physiologically meaningful sweat
readings.
In the second phase (R33), we will establish the clinical utility of our technology by demonstrating the ability to
non-invasively track the target nutrients’ temporal profiles in relation to their circulating levels in blood (in both
healthy subjects and CF patients and through simple/mixed meal-modulated studies). Accordingly, we will first
measure the sweat and blood analytes’ excursion profiles after controlled single/binary combinations of nutrients
intake and develop a machine-learning based algorithm to correlate the sweat analyte readouts to their
circulating concentrations. Then we will assess and characterize the predictive utility of our solution in the context
of complex nutritional supplement studies. Upon its validation, we will recruit a cohort of CF patients and perform
a longitudinal randomized nutritional support study to demonstrate the enabling remote patient monitoring
capabilities rendered by our solution.
The success of this work will represent a groundbreaking contribution towards the development of strategies
to enable precision nutrition and personalized medicine.
项目概要
该提案旨在通过创建可扩展的可穿戴技术来实现精准营养
普通人群以非侵入性方式追踪一组假定的循环营养素的昼夜分布,
因此,我们将解决基本的、相互交织的工程瓶颈和科学问题。
传感器、设备和数据分析层面的问题,以实现基于汗液的可穿戴生物分析
技术,配备自主汗液分泌调节、生物流体管理和分析
为了说明我们的技术的变革潜力,我们将特别将其定位为监控
与囊性纤维化(CF,the
最常见的遗传性多系统疾病),以便实现个体化营养支持,即
CF 治疗的核心。
因此,在第一阶段(R21),我们将开发针对葡萄糖、甘油三酯和β-的微传感器阵列。
我们将结合我们现成的辅助传感方式(汗钠、氯化物、
pH 值和汗液分泌率传感接口),以实现分泌曲线的原位表征
(这对于汗液读数的标准化和 CF 进展的跟踪非常有用)。
工程上,我们会进行汗液表征努力实验来研究分泌率的影响
这些数据集将通过最先进的机器得到增强。
学习算法来制定专用的分析框架来解释汗液分泌变量
并确定最佳的汗液分泌条件,以提供不失真且具有生理意义的汗液
读数。
在第二阶段(R33),我们将通过展示以下能力来建立我们技术的临床实用性:
非侵入性地跟踪与血液中循环水平相关的目标营养素的时间分布(在两种情况下)
健康受试者和 CF 患者并通过简单/混合膳食调节研究)。
在受控的单一/二元营养组合后测量汗液和血液分析物的偏移曲线
摄入并开发基于机器学习的算法,将汗液分析物读数与其相关联
然后我们将评估和描述我们的解决方案在上下文中的预测效用。
复杂的营养补充剂研究经过验证后,我们将招募一组 CF 患者并进行研究。
一项纵向随机营养支持研究,旨在证明远程患者监测的可行性
我们的解决方案提供的功能。
这项工作的成功将为战略的制定做出开创性的贡献
实现精准营养和个性化医疗。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Skin-interfaced electronics: A promising and intelligent paradigm for personalized healthcare.
皮肤接口电子产品:个性化医疗保健的有前途的智能范例。
- DOI:10.1016/j.biomaterials.2023.122075
- 发表时间:2023-03-01
- 期刊:
- 影响因子:14
- 作者:Yangzhi Zhu;Jinghang Li;Jinjoo Kim;Shaopei Li;Yichao Zhao;Jamaluddin Bahari;Payam Eliahoo;Guangh
- 通讯作者:Guangh
Autonomous wearable sweat rate monitoring based on digitized microbubble detection.
基于数字化微泡检测的自主可穿戴出汗率监测。
- DOI:
- 发表时间:2022-11-08
- 期刊:
- 影响因子:6.1
- 作者:Lin, Haisong;Yu, Wenzhuo;Suarez, Jorge Emiliano De Dios;Athavan, Harish;Wang, Yibo;Yeung, Christopher;Lin, Shuyu;Sankararaman, Sriram;Milla, Carlos;Emaminejad, Sam
- 通讯作者:Emaminejad, Sam
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SAM EMAMINEJAD其他文献
SAM EMAMINEJAD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SAM EMAMINEJAD', 18)}}的其他基金
An Autonomous, Non-invasive, and Bioanalytics-enabled Wearable Platform for Precision Nutrition and Personalized Medicine
用于精准营养和个性化医疗的自主、非侵入性且支持生物分析的可穿戴平台
- 批准号:
10198604 - 财政年份:2021
- 资助金额:
$ 19.59万 - 项目类别:
An Autonomous, Non-invasive, and Bioanalytics-enabled Wearable Platform for Precision Nutrition and Personalized Medicine
用于精准营养和个性化医疗的自主、非侵入性且支持生物分析的可穿戴平台
- 批准号:
10888746 - 财政年份:2021
- 资助金额:
$ 19.59万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Bayesian approaches to identify persons with osteoarthritis in electronic health records and administrative health data in the absence of a perfect reference standard
在缺乏完美参考标准的情况下,贝叶斯方法在电子健康记录和管理健康数据中识别骨关节炎患者
- 批准号:
10665905 - 财政年份:2023
- 资助金额:
$ 19.59万 - 项目类别:
Predicting firearm suicide in military veterans outside the VA health system using linked civilian electronic health record data
使用链接的民用电子健康记录数据预测退伍军人管理局卫生系统外退伍军人的枪支自杀
- 批准号:
10655968 - 财政年份:2023
- 资助金额:
$ 19.59万 - 项目类别:
Health and Financial Costs of Unequal Care: Colorectal Cancer as a Case Study
不平等护理的健康和财务成本:结直肠癌案例研究
- 批准号:
10656807 - 财政年份:2023
- 资助金额:
$ 19.59万 - 项目类别:
A mobile health framework for left ventricular end diastolic pressure diagnostics and monitoring.
用于左心室舒张末压诊断和监测的移动健康框架。
- 批准号:
10601929 - 财政年份:2023
- 资助金额:
$ 19.59万 - 项目类别:
Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
- 批准号:
10678108 - 财政年份:2023
- 资助金额:
$ 19.59万 - 项目类别: