Investigation of the design, structure and mechanism of Mena protein interaction inhibitors
Mena蛋白相互作用抑制剂的设计、结构和机制研究
基本信息
- 批准号:10408668
- 负责人:
- 金额:$ 6.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAffinityBehaviorBindingBiological AssayBiologyBiophysicsBlood CirculationBody partC-terminalCancer PatientCell Culture TechniquesCellsCessation of lifeCharacteristicsCollaborationsCommunicationComplexComputer ModelsCrystallographyDataDevelopmentDistalDistantEducational process of instructingEngineeringEnvironmentEpitopesEvaluationFamilyGoalsHandHumanInstitutesInvadedInvestigationLaboratoriesLeadLibrariesLinkMalignant NeoplasmsMammalian CellMediatingMentorsMetastatic toMethodsModelingModernizationMolecularMutationNeoplasm MetastasisPathway interactionsPeptidesPermeabilityPrimary NeoplasmProcessProlinePropertyProtein EngineeringProtein FamilyProtein IsoformsProteinsProteomeRNA SplicingRegulationRegulator GenesResearchResearch MethodologyResearch TrainingRoleSiteSpecificityStructureTechniquesTestingTherapeuticTissuesTrainingTransfectionTravelVariantX-Ray Crystallographyanticancer researchbasebiophysical techniquescancer cellcancer invasivenesscell motilitydesignexperimental studygenetic regulatory proteinhigh throughput screeninginhibitorinsightknock-downmembermetastatic processneoplastic celloverexpressionparalogous genepreferenceprotein functionprotein protein interactionresponsible research conductscaffoldscreeningskillssmall molecule inhibitortherapeutic evaluationtooltumorvasodilator-stimulated phosphoprotein
项目摘要
Project Summary/Abstract
Cancer metastasis depends on coordinated cytoskeletal processes induced by a characteristic change in
expression of specific motility and actin-regulatory genes. Mena, a member of the Ena/VASP family of actin
regulatory proteins, is highly upregulated in invasive cancer cells. The Ena/VASP proteins localize to actin-based
assemblies via their structurally similar EVH1 domains which bind to short linear motifs (SLMs) in other proteins.
Mena is integral to motility pathways that are characteristic of invasive cancer cells. An invasion-associated
splice variant of Mena, MenaINV, has far more potent effects on metastasis than Mena and is preferentially
expressed in invasive cancer cells. However, determination of the precise mechanistic roles of Mena and
MenaINV in metastatic processes has proven challenging. There is currently no molecular explanation for
differences in the protein-protein interaction properties of Mena and its paralogs/isoforms. Designed
peptide/mini-protein binders can reveal molecular determinants of binding specificity and inspire/inform the
design of lead inhibitors. They can also be used to probe the function of proteins in their cellular context and with
temporal control, providing a direct evaluation of therapeutic potential. The primary goal of this proposal is to
uncover the molecular basis for differences in the protein-interaction properties of Mena and MenaINV,
determine the molecular origin of the binding specificity of an existing mini-protein inhibitor, and use
this information to design and test paralog- and isoform- selective, cell-permeable mini-protein inhibitors
of Mena. This goal will be accomplished by applying an array of biophysical experiments such as NMR, SAXS,
X-ray crystallography and binding assays to uncover the molecular origin of protein-interaction differences
between Mena and its paralogs/isoforms. These experiments will reveal molecular determinants of inhibitor
binding specificity and contribute to our understanding of metastasis by providing a molecular explanation for
differences between Mena and MenaINV. The biophysical information gained from these experiments will then be
incorporated into the design of paralog- and isoform- specific mini-protein inhibitors using cutting-edge protein
design methods, including structure-based computation, focused library design, and high throughput screening
techniques. In addition to training in a variety of new research methods, the training plan outlined here includes
extensive development of scientific communication, responsible conduct of research, scientific networking,
teaching, mentoring and management skills. The research and training will take place in the laboratory of Dr.
Amy Keating, a highly interdisciplinary and collaborative group at the forefront of the protein-protein interaction
and protein design fields. The Keating lab is embedded in the MIT Biology department and part of the Koch
Institute for Integrative Cancer Research, providing an ideal environment for training, collaboration, and research.
项目概要/摘要
癌症转移取决于由特征性变化引起的协调的细胞骨架过程
特定运动和肌动蛋白调节基因的表达。 Mena,肌动蛋白 Ena/VASP 家族的成员
调节蛋白在侵袭性癌细胞中高度上调。 Ena/VASP 蛋白定位于基于肌动蛋白的
通过结构相似的 EVH1 结构域进行组装,该结构域与其他蛋白质中的短线性基序 (SLM) 结合。
Mena 是侵袭性癌细胞特征的运动途径的组成部分。与入侵相关
Mena 的剪接变体 MenaINV 对转移的影响比 Mena 强得多,并且优先
在侵袭性癌细胞中表达。然而,确定 Mena 和
事实证明,转移过程中的 MenaINV 具有挑战性。目前尚无分子解释
Mena 及其旁系同源物/亚型的蛋白质-蛋白质相互作用特性的差异。设计
肽/微型蛋白结合物可以揭示结合特异性的分子决定因素并启发/告知
先导抑制剂的设计。它们还可用于探测细胞环境中蛋白质的功能,并与
时间控制,提供治疗潜力的直接评估。该提案的主要目标是
揭示 Mena 和 MenaINV 蛋白质相互作用特性差异的分子基础,
确定现有微型蛋白抑制剂的结合特异性的分子起源,并使用
这些信息可用于设计和测试旁系同源物和异构体选择性、细胞可渗透的微型蛋白抑制剂
梅纳。这一目标将通过应用一系列生物物理实验来实现,例如 NMR、SAXS、
X 射线晶体学和结合测定揭示蛋白质相互作用差异的分子起源
Mena 及其旁系同源物/亚型之间。这些实验将揭示抑制剂的分子决定因素
结合特异性并通过提供分子解释来帮助我们理解转移
Mena 和 MenaINV 之间的差异。从这些实验中获得的生物物理信息将被
使用尖端蛋白质将其纳入旁系同源物和亚型特异性微型蛋白质抑制剂的设计中
设计方法,包括基于结构的计算、重点库设计和高通量筛选
技术。除了各种新研究方法的培训之外,这里概述的培训计划还包括
广泛发展科学传播、负责任的研究行为、科学网络、
教学、指导和管理技能。研究和培训将在博士的实验室进行。
Amy Keating,一个高度跨学科和协作的团队,处于蛋白质-蛋白质相互作用的最前沿
和蛋白质设计领域。基廷实验室隶属于麻省理工学院生物系,也是科赫实验室的一部分
综合癌症研究所,为培训、合作和研究提供理想的环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jackson Halpin其他文献
Jackson Halpin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
DNA四面体限域辅助的高亲和力铅笔芯微电极用于早期癌症精准诊断研究
- 批准号:22304062
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms of Mechanotransduction by LIM Domain Proteins
LIM 结构域蛋白的力转导机制
- 批准号:
10522418 - 财政年份:2022
- 资助金额:
$ 6.98万 - 项目类别:
Mechanisms of Mechanotransduction by LIM Domain Proteins
LIM 结构域蛋白的力转导机制
- 批准号:
10657771 - 财政年份:2022
- 资助金额:
$ 6.98万 - 项目类别:
Defining the role of glucocorticoid-related dendritic spine plasticity in cocaine-induced habits
定义糖皮质激素相关的树突棘可塑性在可卡因诱发的习惯中的作用
- 批准号:
10203832 - 财政年份:2020
- 资助金额:
$ 6.98万 - 项目类别:
Defining the role of glucocorticoid-related dendritic spine plasticity in cocaine-induced habits
定义糖皮质激素相关的树突棘可塑性在可卡因诱发的习惯中的作用
- 批准号:
10407634 - 财政年份:2020
- 资助金额:
$ 6.98万 - 项目类别:
Understanding the roles of WASP in Arp2/3 complex activation and branched actin network assembly
了解 WASP 在 Arp2/3 复合体激活和分支肌动蛋白网络组装中的作用
- 批准号:
10237168 - 财政年份:2020
- 资助金额:
$ 6.98万 - 项目类别: