Characterizing the biochemical regulation of mitochondrial one-carbon metabolism
线粒体一碳代谢的生化调节特征
基本信息
- 批准号:10410227
- 负责人:
- 金额:$ 2.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2021-10-31
- 项目状态:已结题
- 来源:
- 关键词:AgingAutomobile DrivingBiochemicalBiochemistryBiologicalCarbonCell ProliferationCell physiologyCellsCellular StressCollectionComplexConsumptionCoupledCouplesCytoplasmCytosolData SetDefectDependenceDiseaseDrug TargetingDrug usageElectron TransportEnzymesFolic AcidFunctional disorderGeneticGenetic ModelsGlycineHealthHealth BenefitHela CellsHomeostasisHumanHuman DevelopmentHypoxiaInborn Errors of MetabolismIncubatedKnock-outLaboratoriesLeadLesionLinkLogicMalignant NeoplasmsMass Spectrum AnalysisMeasurementMeasuresMetabolicMetabolic PathwayMetabolismMethotrexateMitochondriaMitochondrial DiseasesMitochondrial complex I deficiencyModelingNADHNADPNeural Tube DefectsOrganellesOxidasesOxidation-ReductionOxidesOxidoreductaseOxygenPathway interactionsPharmaceutical PreparationsPlayProductionReactionReactive Oxygen SpeciesRegulationReportingResolutionRoleSLC19A1 geneSerineStable Isotope LabelingTestingTherapeutic InterventionTimeTwin Multiple BirthWaterWorkbasecancer cellcell typecofactorcytotoxicdevelopmental diseaseestablished cell linefolic acid metabolismhuman diseasemetabolomemetabolomicsmitochondrial dysfunctionoxidationrare genetic disordertoolvirtual
项目摘要
Project Summary/Abstract
Dysfunctions in one carbon (1C), or folate, metabolism are well-known for their deleterious effects on human
development, causing neural tube defects. However, the pathway is also implicated in both mitochondrial
dysfunction (found in aging as well as rare, genetic disorders), and many cancers. Because of the centrality of
1C metabolism across these diverse human diseases, it is already the target of drugs such as methotrexate.
Nevertheless, the underlying biochemical logic of the pathway remains incredibly complex, rendering its
fundamental functions difficult to understand, and therefore limiting its ability to be targeted by further drugs.
Contributing to the complexity of 1C metabolism are its subcellular compartmentalization and redox dependency.
It is not well appreciated that there are two parallel branches of 1C metabolism, one in the cytosol and one in
the mitochondria, which are controlled by the subcellular redox state of NADH and NADPH cofactors. Therefore,
to fully characterize the biochemical logic driving 1C metabolism, it is necessary to have tools to precisely perturb
the subcellular redox state of these cofactors. Recent work by the Mootha laboratory has provided tools to do
exactly that: a collection of four water-forming oxidases (NOXes) that can selectively oxidize the NADH or
NADPH pool in the cytoplasm or the mitochondria.
This proposal aims to use these powerful genetic tools to decipher, for the first time, the biochemical logic
underlying 1C metabolism in two states of cellular stress: mitochondrial dysfunction and hypoxia. These
perturbations are good models to probe the activity of 1C metabolism. Mitochondrial dysfunction upregulates the
pathway, and simultaneously reduces both the mitochondrial and cytosolic NADH pools. Hypoxia has also been
shown to significantly remodel the mitochondrial 1C branch and additionally produces cytotoxic reactive oxygen
species (ROS). To better characterize the complex interactions between 1C metabolism, subcellular redox state,
and ROS, this proposal will leverage high-resolution mass spectrometry to measure whole-metabolome
perturbations. Finally, this proposal will couple the metabolomics dataset with measurements of cytotoxic
reactive oxygen species and use an already-established cell line lacking a critical mitochondrial 1C enzyme to
isolate the contributions of 1C on ROS.
1C metabolism plays a critical role in human development, cancer, and mitochondrial dysfunction. However, its
underlying biochemical regulation remains poorly understood. Leveraging recently developed genetic tools to
modulate subcellular redox homeostasis with high-resolution metabolomics, this proposal aims to decipher the
biochemical logic of the 1C metabolic pathway with implications for current and pressing problems in human
health and disease.
项目概要/摘要
一碳 (1C) 或叶酸代谢功能障碍因其对人体的有害影响而闻名
发育,导致神经管缺陷。然而,该途径也涉及线粒体
功能障碍(见于衰老以及罕见的遗传性疾病)和许多癌症。由于中心地位
1C代谢跨越这些不同的人类疾病,它已经是甲氨蝶呤等药物的目标。
然而,该途径的潜在生化逻辑仍然极其复杂,使其
其基本功能难以理解,因此限制了其进一步药物靶向的能力。
1C 代谢的复杂性归因于其亚细胞区室化和氧化还原依赖性。
人们还没有充分认识到 1C 代谢有两个平行的分支,一个在细胞质中,一个在细胞质中。
线粒体,由 NADH 和 NADPH 辅因子的亚细胞氧化还原状态控制。所以,
为了充分表征驱动1C代谢的生化逻辑,需要有工具来精确扰动
这些辅因子的亚细胞氧化还原状态。 Mootha 实验室最近的工作提供了工具
正是这样:四种水形成氧化酶 (NOX) 的集合,可以选择性地氧化 NADH 或
NADPH 库位于细胞质或线粒体中。
该提案旨在利用这些强大的遗传工具首次破译生化逻辑
两种细胞应激状态下的 1C 代谢:线粒体功能障碍和缺氧。这些
扰动是探测 1C 代谢活性的良好模型。线粒体功能障碍上调
途径,同时减少线粒体和胞质 NADH 池。也曾缺氧
显示可显着重塑线粒体 1C 分支并额外产生细胞毒性活性氧
物种(ROS)。为了更好地表征 1C 代谢、亚细胞氧化还原状态、
和 ROS,该提案将利用高分辨率质谱来测量整个代谢组
扰动。最后,该提案将代谢组学数据集与细胞毒性测量结合起来
活性氧并使用缺乏关键线粒体 1C 酶的已建立细胞系
分离 1C 对 ROS 的贡献。
1C 代谢在人类发育、癌症和线粒体功能障碍中发挥着至关重要的作用。然而,其
潜在的生化调节仍然知之甚少。利用最近开发的遗传工具
通过高分辨率代谢组学调节亚细胞氧化还原稳态,该提案旨在破译
1C代谢途径的生化逻辑对人类当前和紧迫问题的影响
健康和疾病。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An engineered enzyme that targets circulating lactate to alleviate intracellular NADH:NAD+ imbalance.
一种针对循环乳酸以缓解细胞内 NADH:NAD 失衡的工程酶。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:46.9
- 作者:Patgiri, Anupam;Skinner, Owen S;Miyazaki, Yusuke;Schleifer, Grigorij;Marutani, Eizo;Shah, Hardik;Sharma, Rohit;Goodman, Russell P;To, Tsz;Robert Bao, Xiaoyan;Ichinose, Fumito;Zapol, Warren M;Mootha, Vamsi K
- 通讯作者:Mootha, Vamsi K
Genetic Screen for Cell Fitness in High or Low Oxygen Highlights Mitochondrial and Lipid Metabolism.
高氧或低氧条件下细胞健康度的遗传筛选突出了线粒体和脂质代谢。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:64.5
- 作者:Jain, Isha H;Calvo, Sarah E;Markhard, Andrew L;Skinner, Owen S;To, Tsz;Ast, Tslil;Mootha, Vamsi K
- 通讯作者:Mootha, Vamsi K
Distinct mitochondrial defects trigger the integrated stress response depending on the metabolic state of the cell.
不同的线粒体缺陷会根据细胞的代谢状态触发综合应激反应。
- DOI:
- 发表时间:2020-05-28
- 期刊:
- 影响因子:7.7
- 作者:Mick, Eran;Titov, Denis V;Skinner, Owen S;Sharma, Rohit;Jourdain, Alexis A;Mootha, Vamsi K
- 通讯作者:Mootha, Vamsi K
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Owen Samuel Skinner其他文献
Owen Samuel Skinner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Owen Samuel Skinner', 18)}}的其他基金
Characterizing the biochemical regulation of mitochondrial one-carbon metabolism
线粒体一碳代谢的生化调节特征
- 批准号:
9755615 - 财政年份:2019
- 资助金额:
$ 2.35万 - 项目类别:
相似国自然基金
基于驾驶人行为理解的人机共驾型智能汽车驾驶权分配机制研究
- 批准号:52302494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人机共驾汽车驾驶风险分析及控制权智能交互机理
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
定性与定量分析跟驰行驶中汽车驾驶员情感-行为交互作用机理
- 批准号:71901134
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
兼顾效率与能效的城市道路智能网联汽车驾驶行为优化及实证研究
- 批准号:71871028
- 批准年份:2018
- 资助金额:46.0 万元
- 项目类别:面上项目
汽车驾驶员疲劳的心理生理检测及神经机制
- 批准号:31771225
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Endolysosomal trafficking and lipid metabolism defects in FTLD
FTLD 中的内溶酶体运输和脂质代谢缺陷
- 批准号:
10645964 - 财政年份:2023
- 资助金额:
$ 2.35万 - 项目类别:
Maternal organelle contribution to offspring germline health
母体细胞器对后代种系健康的贡献
- 批准号:
10607418 - 财政年份:2023
- 资助金额:
$ 2.35万 - 项目类别:
Role of cytosolic DNA-induced sterile inflammation driving cellular and organismal progeria/aging hallmarks
细胞质 DNA 诱导的无菌炎症在驱动细胞和机体早衰/衰老标志中的作用
- 批准号:
10901042 - 财政年份:2023
- 资助金额:
$ 2.35万 - 项目类别:
Multiscale Effects of Aging on Elastic Arterial Tissue Mechanics
衰老对弹性动脉组织力学的多尺度影响
- 批准号:
10811244 - 财政年份:2023
- 资助金额:
$ 2.35万 - 项目类别: