Agitation in Alzheimer's Disease: Identification and Prediction Using Digital Behavioral Markers and Indoor Environmental Factors

阿尔茨海默病中的躁动:使用数字行为标记和室内环境因素进行识别和预测

基本信息

  • 批准号:
    10404523
  • 负责人:
  • 金额:
    $ 14.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-15 至 2026-02-28
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Agitation is one of the most common and unmanageable neuropsychiatric symptoms experienced by persons with dementia (PWD), affecting 45-83% of this ever-growing population. Agitation brings much stress and detriment to patients and caregivers. Treatment of agitation is often pharmacological intervention which can have adverse side effects. There is a great need for identification of early behavioral warning signs and environmental precipitants of agitation so that it can pave the way for proactive management of agitation and lower the burden on caregivers. The overall goal of this project is to address this critical unmet need through the proposed research and mentored training of the applicant. The Oregon Center for Aging & Technology (ORCATECH), under the direction of Dr. Kaye (proposed primary mentor), has more than a decade of experience developing and deploying a digital behavioral assessment platform in older adults' homes and has the experience analyzing the data collected in the clinical context of older adults. The scientific goals of this proposal are to develop digital behavioral markers that identify episodes of agitation, identify early behavioral warning signs and environmental precipitants of agitation, and build a risk prediction model of episodes of agitation using environmental and behavioral sensors and techniques from machine learning and time series analysis. The applicant will collect behavioral data from 10 study participants with later-stage dementia living in memory care units and 10 study participants with later-stage dementia living at their own homes using passive infrared motion sensors, wearable actigraphy devices, and bed pressure mats and follow them for 2 years. Such behavioral data will be used to identify digital behavioral markers that indicate or predict episodes of agitation. The applicant will also collect environmental data (ambient light level, noise level, temperature, relative humidity, and barometric pressure) from their living environments, and such data will be used to identify environmental precipitants of agitation. In order to conduct the proposed study and prepare for an independent research career, the applicant will be trained through taking courses and attending workshops in the following areas: (1) the different diagnosis and standard of care for PWD, their neuropsychiatric symptoms and their precipitants; (2) methods of using technology in dementia research; (3) novel methods from deep learning and time series analysis for building risk prediction models of agitation; and (4) development of professional skills for conducting successful and ethically responsible clinical research. The proposed team of mentors and consultant each provide expertise in one or more of these areas and are together committed to collaboratively facilitating the applicant's training. The applicant will apply these new skills to the proposed research project and obtain R01 support in order to use the methods for detecting and predicting episode of agitation to create and explore the effectiveness of early interventions for agitation in PWD. Such findings are likely to lead to improve methods for reducing and detecting episodes of agitation and ultimately help protect caregivers' physical and mental health while improving dementia care.
项目概要 激越是人们经历的最常见且难以控制的神经精神症状之一 痴呆症 (PWD) 影响着这一不断增长的人口的 45-83%。烦躁会带来很大的压力 对患者和护理人员造成损害。躁动的治疗通常是药物干预,可以 有不良副作用。非常需要识别早期行为警告信号和 躁动的环境诱因,从而可以为主动管理躁动和 减轻护理人员的负担。该项目的总体目标是通过以下方式解决这一未满足的关键需求: 申请人的拟议研究和指导培训。俄勒冈老龄化与技术中心 (ORCATECH)在 Kaye 博士(拟议的主要导师)的指导下,拥有十多年的 拥有在老年人家中开发和部署数字行为评估平台的经验,并且拥有 分析在老年人临床背景下收集的数据的经验。本次活动的科学目标 建议开发数字行为标记来识别躁动发作、识别早期行为 预警信号和环境诱发因素,并建立突发事件的风险预测模型 使用环境和行为传感器以及机器学习和时间序列技术进行搅拌 分析。申请人将收集 10 名居住在以下地区患有晚期痴呆症的研究参与者的行为数据: 记忆护理中心和 10 名患有晚期痴呆症的研究参与者住在自己家里,使用被动疗法 红外运动传感器、可穿戴体动记录仪和床压垫,并跟踪它们 2 年。 此类行为数据将用于识别指示或预测事件发作的数字行为标记。 搅动。申请人还将收集环境数据(环境光水平、噪音水平、温度、 他们的生活环境中的相对湿度和气压),这些数据将用于 识别搅动的环境诱因。为了进行拟议的研究并为 独立的研究生涯,申请人将通过参加课程和参加研讨会接受培训 以下几个方面:(1)残疾人的不同诊断和护理标准,其神经精神症状 及其沉淀物; (2) 痴呆症研究中的技术应用方法; (3)深层次的新方法 用于构建躁动风险预测模型的学习和时间序列分析; (4) 发展 进行成功且道德负责的临床研究的专业技能。拟议的团队 导师和顾问各自提供一个或多个这些领域的专业知识,并共同致力于 协作促进申请人的培训。申请人将把这些新技能应用到拟议的项目中 研究项目并获得R01支持,以便使用检测和预测发作的方法 躁动创建并探索针对残疾人躁动的早期干预措施的有效性。这些发现是 可能会改进减少和检测躁动发作的方法,并最终帮助保护 护理人员的身心健康,同时改善痴呆症护理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wan-Tai Au-Yeung其他文献

Wan-Tai Au-Yeung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wan-Tai Au-Yeung', 18)}}的其他基金

Agitation in Alzheimer's Disease: Identification and Prediction Using Digital Behavioral Markers and Indoor Environmental Factors
阿尔茨海默病中的躁动:使用数字行为标记和室内环境因素进行识别和预测
  • 批准号:
    10595595
  • 财政年份:
    2021
  • 资助金额:
    $ 14.73万
  • 项目类别:
Agitation in Alzheimer's Disease: Identification and Prediction Using Digital Behavioral Markers and Indoor Environmental Factors
阿尔茨海默病中的躁动:使用数字行为标记和室内环境因素进行识别和预测
  • 批准号:
    10190522
  • 财政年份:
    2021
  • 资助金额:
    $ 14.73万
  • 项目类别:

相似国自然基金

社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
  • 批准号:
    72302067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高尿酸调控TXNIP驱动糖代谢重编程影响巨噬细胞功能
  • 批准号:
    82370895
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
倒装芯片超声键合微界面结构演变机理与影响规律
  • 批准号:
    52305599
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
寒地城市学区建成环境对学龄儿童心理健康的影响机制与规划干预路径研究
  • 批准号:
    52378051
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
原位研究聚变燃料纯化用Pd-Ag合金中Ag对辐照缺陷演化行为的影响及其相互作用机制
  • 批准号:
    12305308
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Linking neural mechanisms of emotion and attention with naturalistic trauma symptom experience: An event-related potential and ecological momentary assessment study
将情绪和注意力的神经机制与自然创伤症状体验联系起来:事件相关电位和生态瞬时评估研究
  • 批准号:
    10679288
  • 财政年份:
    2023
  • 资助金额:
    $ 14.73万
  • 项目类别:
Impact VR: An Emotion Recognition and Regulation Training Program for Youth with Conduct Disorder
Impact VR:针对行为障碍青少年的情绪识别与调节培训项目
  • 批准号:
    10698855
  • 财政年份:
    2023
  • 资助金额:
    $ 14.73万
  • 项目类别:
Alexithymia Intervention for Suicide (ALEXIS)
自杀述情障碍 (ALEXIS)
  • 批准号:
    10588348
  • 财政年份:
    2023
  • 资助金额:
    $ 14.73万
  • 项目类别:
Examining Therapeutic Change Mechanisms in an Affect Regulation, Father-Focused Intervention for Reducing Family Violence and Associated Symptoms in Children
检查情感调节中的治疗改变机制,以父亲为中心的干预措施,以减少家庭暴力和儿童相关症状
  • 批准号:
    10733812
  • 财政年份:
    2023
  • 资助金额:
    $ 14.73万
  • 项目类别:
Towards the identification of a mesoscale neural systems logic underlying innate behaviors
识别先天行为背后的中尺度神经系统逻辑
  • 批准号:
    10734660
  • 财政年份:
    2023
  • 资助金额:
    $ 14.73万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了