Transplantable Micro-Tissue Engineered Neural Networks to Restore the Nigrostriatal Pathway in Parkinson's Disease
可移植微组织工程神经网络恢复帕金森病的黑质纹状体通路
基本信息
- 批准号:10403480
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectArchitectureAxonBehavioralBrainCharacteristicsClinicalClinical TreatmentCorpus striatum structureCustomDeafferentation procedureDeep Brain StimulationDisease modelDopamineElectrophysiology (science)EmbryoEngineeringFamily suidaeFetal Tissue TransplantationFutureGenerationsHealthHistologicHumanHydrogelsImageImplantIn VitroLeftMaintenanceMedical centerMicroinjectionsModelingMotorNerve DegenerationNervous System TraumaNervous system structureNeuroanatomyNeurodegenerative DisordersNeuronsOutcomeParkinson DiseasePathway interactionsPatientsPennsylvaniaPhenotypePhiladelphiaPopulationProcessRattusRegenerative MedicineRodentRodent ModelStructureSubstantia nigra structureSymptomsSynapsesSystemTechniquesTechnologyTestingTissue EngineeringTissuesTransplantationUniversitiesVeteransWorkbasebrain circuitryclinical translationconnectomedopaminergic neuronhuman adult stem cellhuman stem cellsimplantationin vivo Modelmotor deficitmotor symptommultidisciplinaryneural networkneuronal replacementneuronal survivalnigrostriatal dopaminergic pathwaynigrostriatal pathwaynoveloptogeneticspars compactaporcine modelreconstructionrepairedrestorationstem cell biologystem cell derived tissuesstem cellstreatment strategy
项目摘要
ABSTRACT
Parkinson's disease (PD) is a progressive neurodegenerative disease that affects 1-2% of people over 65. The
classic motor symptoms of PD result from selective degeneration of dopaminergic neurons in the substantia
nigra pars compacta (SNpc), resulting in a loss of their long-projecting axonal inputs to the striatum. Current
treatment strategies [e.g., dopamine replacement, deep brain stimulation (DBS)] can only minimize the
symptoms of nigrostriatal degeneration, not directly replace the lost pathway. Therefore, we propose a novel
regenerative medicine solution, whereby custom-built micro-tissue engineered neural networks (TENNs) are
transplanted to physically replace the axonal connections from the SNpc to the striatum. Specifically, micro-
TENNs will be transplanted in rodent and porcine models of PD to directly replace SNpc neurons, restore
axonal inputs to the striatum, and ameliorate motor deficits. Our overarching hypothesis is that preformed
micro-TENNs comprised of dopaminergic neurons and long-projecting axonal tracts will survive, synaptically
integrate, and thereby physically reconstruct the nigrostriatal pathway to restore motor function in models of
nigrostriatal deafferentation. To test this hypothesis, we propose three aims: (1) Determine optimal in vitro
techniques to create dopaminergic micro-TENNs, using both differentiated neurons as well as stem-cell
derived neurons; (2) Assess micro-TENN capabilities to reconstruct the nigrostriatal pathway, restore
dopaminergic inputs, and ameliorate motor symptoms rodents; (3) Apply human-scale micro-TENNs to
reconstruct the nigrostriatal pathway in swine. Living dopaminergic micro-TENNs will be constructed with an
architecture consisting of a discrete population of neurons with unidirectional long-projecting axonal tracts.
Micro-TENN health, phenotype, structure, and function will be optimized in vitro. To enable clinical translation,
we will construct human-scale micro-TENNs using human stem cell derived dopaminergic neurons. Preformed
constructs will be stereotactically microinjected into neurodegenerative PD rat and pig models to assess circuit
reconstruction and motor symptom amelioration. Nigrostriatal pathway reconstruction will be assessed using
behavioral, imaging, electrophysiological, and histological outcomes. The proposed work will establish the
future clinical potential of personalized micro-TENNs to ameliorate PD motor symptoms by restoring the
dopaminergic nigrostriatal pathway. Our micro-tissue engineering strategy addresses a crucial gap in clinical
treatment by providing a means to directly replace the nigrostriatal pathway and, as a result, restore motor
function following PD neurodegeneration. By virtue of their long axonal tracts, micro-TENNs may be capable of
replacing degenerated circuitry to restore dopaminergic inputs to the striatum. Our custom process to generate
micro-TENNs enables a precisely engineered structure where the number of neurons and generation of
dopamine can be known prior to implantation, thus, alleviating issues of inconsistency historically seen in fetal
tissue grafts. Therefore, micro-TENNs may provide a transformative and scalable solution to permanently
replace lost neuroanatomy and alleviate the cause of motor symptoms for the millions of patient afflicted by
PD.
抽象的
帕金森病 (PD) 是一种进行性神经退行性疾病,影响 1-2% 的 65 岁以上人群。
PD 的典型运动症状是由实体中多巴胺能神经元的选择性变性引起的
黑质致密部(SNpc),导致其向纹状体的长投射轴突输入丢失。当前的
治疗策略[例如多巴胺替代、深部脑刺激(DBS)]只能最大限度地减少
黑质纹状体变性的症状,并不是直接取代失去的通路。因此,我们提出一部小说
再生医学解决方案,定制的微组织工程神经网络(TENN)
移植以物理替换从 SNpc 到纹状体的轴突连接。具体来说,微
TENNs将被移植到PD啮齿动物和猪模型中,直接替代SNpc神经元,恢复
轴突输入纹状体,并改善运动缺陷。我们的总体假设是
由多巴胺能神经元和长突出轴突束组成的微型 TENN 将在突触中存活
整合,从而物理重建黑质纹状体通路,以恢复模型中的运动功能
黑质纹状体传入神经阻滞。为了检验这一假设,我们提出了三个目标:(1)确定最佳体外
使用分化的神经元和干细胞创建多巴胺能微型 TENN 的技术
衍生神经元; (2) 评估 micro-TENN 重建黑质纹状体通路、恢复黑质纹状体通路的能力
多巴胺能输入,并改善啮齿动物的运动症状; (3) 将人体规模的微型TENN应用于
重建猪的黑质纹状体通路。活的多巴胺能微型 TENN 将由
由具有单向长突出轴突束的离散神经元群组成的结构。
Micro-TENN 的健康、表型、结构和功能将在体外得到优化。为了实现临床翻译,
我们将使用人类干细胞衍生的多巴胺能神经元构建人类规模的微型 TENN。预成型
构建体将被立体定向显微注射到神经退行性 PD 大鼠和猪模型中以评估回路
重建和运动症状改善。将使用以下方法评估黑质纹状体通路重建
行为、影像、电生理和组织学结果。拟议的工作将建立
个性化微型 TENN 的未来临床潜力可通过恢复神经功能来改善 PD 运动症状
多巴胺能黑质纹状体通路。我们的微组织工程策略解决了临床上的一个关键差距
通过提供直接替代黑质纹状体通路的方法来治疗,从而恢复运动
PD神经变性后的功能。凭借其长轴突束,微型 TENN 可能能够
替换退化的电路以恢复纹状体的多巴胺能输入。我们的定制流程生成
微型 TENN 实现了精确设计的结构,其中神经元的数量和生成
在植入之前就可以知道多巴胺,从而减轻历史上在胎儿中看到的不一致问题
组织移植物。因此,微型 TENN 可能会提供一种变革性的、可扩展的解决方案,以永久地
替代丢失的神经解剖学并减轻数百万患有该病的患者运动症状的原因
PD。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Kacy Cullen其他文献
Daniel Kacy Cullen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Kacy Cullen', 18)}}的其他基金
Tissue Engineered Nigrostriatal Pathway for Anatomical Tract Reconstruction in Parkinson's Disease
组织工程黑质纹状体通路用于帕金森病的解剖束重建
- 批准号:
10737098 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Tissue Engineered Rostral Migratory Stream for Directed Neuronal Replacement
用于定向神经元替换的组织工程嘴侧迁移流
- 批准号:
10820173 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Tissue Engineered Rostral Migratory Stream for Directed Neuronal Replacement
用于定向神经元替换的组织工程嘴侧迁移流
- 批准号:
10210547 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Tissue engineered rostral migratory stream for directed neuronal replacement
用于定向神经元替换的组织工程嘴部迁移流
- 批准号:
10527087 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Tissue Engineered Rostral Migratory Stream for Directed Neuronal Replacement
用于定向神经元替换的组织工程嘴侧迁移流
- 批准号:
10373065 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Tissue Engineered Rostral Migratory Stream for Directed Neuronal Replacement
用于定向神经元替换的组织工程嘴侧迁移流
- 批准号:
10608115 - 财政年份:2021
- 资助金额:
-- - 项目类别:
SDR: Genomic analysis of blast tube induced TBI in mice
SDR:小鼠爆管诱发 TBI 的基因组分析
- 批准号:
10553170 - 财政年份:2020
- 资助金额:
-- - 项目类别:
SDR: Genomic analysis of blast tube induced TBI in mice
SDR:小鼠爆管诱发 TBI 的基因组分析
- 批准号:
10438522 - 财政年份:2020
- 资助金额:
-- - 项目类别:
SDR: Genomic analysis of blast tube induced TBI in mice
SDR:小鼠爆管诱发 TBI 的基因组分析
- 批准号:
9916439 - 财政年份:2020
- 资助金额:
-- - 项目类别:
相似国自然基金
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高尿酸调控TXNIP驱动糖代谢重编程影响巨噬细胞功能
- 批准号:82370895
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
倒装芯片超声键合微界面结构演变机理与影响规律
- 批准号:52305599
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
寒地城市学区建成环境对学龄儿童心理健康的影响机制与规划干预路径研究
- 批准号:52378051
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
原位研究聚变燃料纯化用Pd-Ag合金中Ag对辐照缺陷演化行为的影响及其相互作用机制
- 批准号:12305308
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Translational genomics in gout: From GWAS signal to mechanism
痛风的转化基因组学:从 GWAS 信号到机制
- 批准号:
10735151 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Tissue Engineered Nigrostriatal Pathway for Anatomical Tract Reconstruction in Parkinson's Disease
组织工程黑质纹状体通路用于帕金森病的解剖束重建
- 批准号:
10737098 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Toward therapeutic targeting of liquid-liquid phase separation dynamics in skin
皮肤液-液相分离动力学的治疗靶向
- 批准号:
10679610 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
-- - 项目类别: