HEALing LB3P: Profiling Biomechanical, Biological and Behavioral phenotypes

HEALing LB3P:分析生物力学、生物和行为表型

基本信息

项目摘要

ABSTRACT Chronic Low Back Pain (CLBP) is a complex multi-factorial condition, as well as the most prevalent painful musculoskeletal disorder worldwide. Identifying the optimal treatment for CLBP on a patient-specific basis is an important and unresolved challenge in medicine. Tailoring interventions according to patient movement characteristics may improve clinical outcomes. Patients with CLBP are heterogenous in terms of their symptoms, clinical exam findings, and conventional medical imaging results. For most patients, the optimal treatment plan is unknown, therefore it is challenging for the clinician to prescribe an appropriate and cost- effective course of treatment. One important clinical characteristic that can be used for classification is severity of physical impairment (problems in lumbar spine structure and function) and resulting activity limitation (difficulty executing activities). A common approach to assess the impact of physical impairment is using patient-reported outcomes (PROs), wherein patients rate their perceived ability to perform various activities in their usual environment. PROs are subjective and discrepancies have been observed between how patients score PROs and how they perform activities when observed in the clinic. It is advantageous to complement PROs with objective performance-based measures of physical function. Therefore, the overall hypothesis of the Biomechanical Core of the parent grant is that including patient-specific spine biomechanics in predictive models improves our ability to characterize CLBP patients. To that end, the purpose of this administrative supplement is to expand upon Specific Aim 2 of the Biomechanical Core, which is to characterize lumbopelvic kinematics during functional tasks and daily activities using wearable (inertial) motion sensors. Specifically, this work will aim to develop deep (machine) learning algorithms that can correctly identify and characterize motions of the lumbar spine during both clinical and field assessments. During the clinical assessments, participants will be asked to perform functional tasks while wearing inertial measurement units (IMUs). Collected data will be used to develop and train machine learning algorithms to identify tasks of interest such as activities of daily living and aberrant/painful motions. The deep learning algorithms developed will be used to label lumbar motion data collected continuously during field assessment in patients' homes over a 7-day testing period. The supplemental data will be compared with the standard data analyses approaches proposed for the overall study and included with the LB3P phenotyping. Moreover, the deep learning algorithms will serve as the foundation for the development of ecological momentary interventions that are responsive to patient's real-world functional impairments related to CLBP.
抽象的 慢性腰痛 (CLBP) 是一种复杂的多因素病症,也是最常见的疼痛 全世界的肌肉骨骼疾病。根据患者具体情况确定 CLBP 的最佳治疗方法是 医学上重要且尚未解决的挑战。根据患者的运动情况定制干预措施 特征可能会改善临床结果。 CLBP 患者的病情各不相同 症状、临床检查结果和常规医学影像结果。对于大多数患者来说,最佳的 治疗计划未知,因此临床医生很难制定适当且成本低廉的方案。 有效的疗程。可用于分类的一项重要临床特征是严重程度 身体损伤(腰椎结构和功能问题)以及由此导致的活动限制 (执行活动困难)。评估身体损伤影响的常用方法是使用 患者报告的结果(PRO),其中患者评价他们在以下方面进行各种活动的感知能力 他们平时的环境。 PRO 是主观的,并且观察到患者之间的差异 对 PRO 进行评分以及他们在诊所观察时如何进行活动。有利于互补 PRO 具有基于客观表现的身体机能测量。因此,总体假设为 母基金的生物力学核心是将患者特定的脊柱生物力学纳入预测中 模型提高了我们描述 CLBP 患者特征的能力。为此,本行政 补充内容是对生物力学核心的具体目标 2 进行扩展,即表征腰盆腔 使用可穿戴(惯性)运动传感器进行功能任务和日常活动期间的运动学。具体来说,这 工作目标是开发能够正确识别和表征的深度(机器)学习算法 临床和现场评估期间腰椎的运动。在临床评估过程中, 参与者将被要求在佩戴惯性测量单元(IMU)的同时执行功能任务。 收集的数据将用于开发和训练机器学习算法,以识别感兴趣的任务,例如 如日常生活活动和异常/疼痛的动作。所开发的深度学习算法将被使用 对患者家中 7 天的现场评估期间连续收集的腰部运动数据进行标记 测试期。补充数据将与提出的标准数据分析方法进行比较 用于整体研究并包含在 LB3P 表型分析中。此外,深度学习算法将服务于 作为开发响应患者的生态瞬时干预措施的基础 与 CLBP 相关的现实世界功能障碍。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gwendolyn A Sowa其他文献

Gwendolyn A Sowa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gwendolyn A Sowa', 18)}}的其他基金

Metabolic Symbiosis: Lactate as an Epigenetic Regulator and a Biofuel in Age-dependent Intervertebral Disc Degeneration
代谢共生:乳酸作为年龄依赖性椎间盘退变的表观遗传调节剂和生物燃料
  • 批准号:
    10704160
  • 财政年份:
    2022
  • 资助金额:
    $ 17.62万
  • 项目类别:
Metabolic Symbiosis: Lactate as an Epigenetic Regulator and a Biofuel in Age-dependent Intervertebral Disc Degeneration
代谢共生:乳酸作为年龄依赖性椎间盘退变的表观遗传调节剂和生物燃料
  • 批准号:
    10704160
  • 财政年份:
    2022
  • 资助金额:
    $ 17.62万
  • 项目类别:
HEALing LB3P: Profiling Biomechanical, Biological and Behavioral phenotypes
HEALing LB3P:分析生物力学、生物和行为表型
  • 批准号:
    10415626
  • 财政年份:
    2021
  • 资助金额:
    $ 17.62万
  • 项目类别:
HEALing LB3P: Profiling Biomechanical, Biological and Behavioral phenotypes
HEALing LB3P:分析生物力学、生物和行为表型
  • 批准号:
    10765803
  • 财政年份:
    2019
  • 资助金额:
    $ 17.62万
  • 项目类别:
HEALing LB3P: Profiling Biomechanical, Biological and Behavioral phenotypes
HEALing LB3P:分析生物力学、生物和行为表型
  • 批准号:
    10765802
  • 财政年份:
    2019
  • 资助金额:
    $ 17.62万
  • 项目类别:
Influence of inflammation-related genetic variants on PT treatment response in a population affected by CLBP
CLBP 人群中炎症相关基因变异对 PT 治疗反应的影响
  • 批准号:
    10208162
  • 财政年份:
    2019
  • 资助金额:
    $ 17.62万
  • 项目类别:
HEALing LB3P: Profiling Biomechanical, Biological and Behavioral phenotypes
HEALing LB3P:分析生物力学、生物和行为表型
  • 批准号:
    9897962
  • 财政年份:
    2019
  • 资助金额:
    $ 17.62万
  • 项目类别:
HEALing LB3P: Profiling Biomechanical, Biological and Behavioral phenotypes
HEALing LB3P:分析生物力学、生物和行为表型
  • 批准号:
    9897963
  • 财政年份:
    2019
  • 资助金额:
    $ 17.62万
  • 项目类别:
Alternative treatments for disc degeneration: Effects on matrix homeostasis
椎间盘退变的替代治疗:对基质稳态的影响
  • 批准号:
    8208204
  • 财政年份:
    2009
  • 资助金额:
    $ 17.62万
  • 项目类别:
Alternative treatments for disc degeneration: Effects on matrix homeostasis
椎间盘退变的替代治疗:对基质稳态的影响
  • 批准号:
    7806660
  • 财政年份:
    2009
  • 资助金额:
    $ 17.62万
  • 项目类别:

相似国自然基金

老年期痴呆患者基础性日常生活活动能力损害的认知神经心理学基础及测量优化
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于VR技术的养老机构老年人ADL康复训练和评估量化体系构建及应用研究
  • 批准号:
    81902295
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Administrative Supplement for Peer-Delivered and Technology-Assisted Integrated Illness Management and Recovery
同行交付和技术辅助的综合疾病管理和康复的行政补充
  • 批准号:
    10811292
  • 财政年份:
    2023
  • 资助金额:
    $ 17.62万
  • 项目类别:
Extending Digital Survivorship Needs Assessment Planning Tools to Enhance Communication in the Head and Neck Cancer Survivor-Caregiver-Provider Triad
扩展数字化生存者需求评估规划工具,以加强头颈癌生存者-护理者-提供者三人组中的沟通
  • 批准号:
    10831265
  • 财政年份:
    2022
  • 资助金额:
    $ 17.62万
  • 项目类别:
Advancing Rehabilitation Paradigms for Older Adults in Skilled Nursing Facilities
推进熟练护理机构中老年人的康复模式
  • 批准号:
    10768215
  • 财政年份:
    2021
  • 资助金额:
    $ 17.62万
  • 项目类别:
Identification of cognitive decline and dementia: Prediction by everyday driving behaviors and physiological responses
识别认知能力下降和痴呆:通过日常驾驶行为和生理反应进行预测
  • 批准号:
    10753717
  • 财政年份:
    2020
  • 资助金额:
    $ 17.62万
  • 项目类别:
Longitudinal neuroimaging and neurocognitive assessment of risk and protective factors across the schizophrenia spectrum
精神分裂症谱系风险和保护因素的纵向神经影像和神经认知评估
  • 批准号:
    10381940
  • 财政年份:
    2020
  • 资助金额:
    $ 17.62万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了