2/5 CAPER Computerized assessment of psychosis risk
2/5 CAPER 精神病风险的计算机化评估
基本信息
- 批准号:10399414
- 负责人:
- 金额:$ 39.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAmericanAttenuatedAutomobile DrivingBehavioralBiological MarkersClinicalCollaborationsComputing MethodologiesDetectionDeteriorationDiagnosisDimensionsEarly DiagnosisEarly InterventionEarly identificationFoundationsFrequenciesFunctional disorderGenerationsGoalsHuman ResourcesIndividualInternetIntervention TrialInterviewJointsLinkLongitudinal StudiesMachine LearningMeasuresMethodsModelingNeurobiologyOutcomeParticipantPatient Self-ReportPerformancePersonsPopulationPredictive ValuePrimary PreventionPsychopathologyPsychosesPublic HealthPublishingRecording of previous eventsResearchResearch PersonnelRiskRoleSample SizeSecondary PreventionSensitivity and SpecificitySeveritiesSiteSpecificitySymptomsSystemTechniquesTest ResultTestingTrainingTranslatingUnited StatesWorkYouthbaseclinical high risk for psychosisclinical practicecognitive testingcomputerizeddesignfollow-upfunctional declinefunctional outcomeshelp-seeking behaviorhigh riskhigh risk populationimprovedmachine learning classificationmachine learning methodnew therapeutic targetnext generationonline deliverypreventpreventive interventionpsychosis riskpsychotic symptomsrecruitrelating to nervous systemscreeningsocialtrait
项目摘要
Summary
Research suggests that early identification of individuals at clinical high risk (CHR) for psychosis may be
able to improve illness course. Studies suggest that early identification of CHR using specialized interviews
with help-seeking individuals (with attenuated psychosis symptoms) is a useful approach. This work has two
major limitations: 1) interview methods have limited specificity as only 20% of CHR individuals convert to
psychosis, and 2) the expertise needed to make CHR diagnosis is only accessible in a few academic centers.
We propose to develop a new psychosis symptom domain sensitive (PSDS) battery, prioritizing tasks that
show correlations with the symptoms that define psychosis and are tied to the neurobiological systems and
computational mechanisms implicated in these symptoms. To promote accessibility, we utilize behavioral tasks
that could be administered over the internet; this will set the stage for later research testing widespread
screening that would identify those most in need of in-depth assessment. To reach that goal we first need
determine which tasks are effective for predicting illness course and how this strategy compares to published
prediction methods. We propose to recruit 500 CHR participants, 500 help-seeking individuals, and 500
healthy controls across 5 sites with the following Aims: Aim 1A) To develop a psychosis risk calculator through
the application of machine learning (ML) methods to the measures from the PSDS battery. In an exploratory
ML historical analysis, we will determine the added value of combining the PSDS with self-report measures and
predicators;Aim 1B) We will evaluate group differences on the risk calculator score and hypothesize
that the risk calculator score of the CHR group will differ from help-seeking and healthy controls. We further
hypothesize that the risk calculator score of the CHR converters will differ significantly from groups of CHR
nonconverters, help-seeking and healthy controls. The inclusion of a help-seeking group is critical for
translating the risk-calculator into clinical practice, where the goal is to differentiate those at greatest risk for
psychosis from those with other forms of psychopathology; Aim 1C): Evaluate how baseline PSDS
performance relates to symptomatic outcome 2 years later examining: 1) symptomatic worsening treated as a
continuous variable, and 2) conversion to psychosis. We hypothesize that the PSDS calculator: 1) will predict
symptom course and, 2) that the differences observed between converters and nonconverters will be larger on
the PSDS calculator than on the NAPLS calculator. Aim 2) Use ML methods, as above, to develop calculators
that predict: 2A) social, and, 2B) role function deterioration, both observed over two years. Because negative
are more strongly linked to functional outcome than positive symptoms, we predict that negative mechanism tasks will be the strongest predictor of functional decline in both domains.This project will provide a next-generation CHR battery, tied to illness mechanisms and powered by cutting-edge computational methods that can be used to facilitate the earliest possible detection of psychosis risk.
概括
研究表明,早期识别精神病临床高风险(CHR)个体可能是
能够改善病程。研究表明,通过专门访谈可以早期识别 CHR
与寻求帮助的人(精神病症状减轻)联系是一种有用的方法。这部作品有两个
主要局限性:1) 访谈方法的特异性有限,因为只有 20% 的 CHR 个体转变为
精神病,2) 只有少数学术中心才能获得 CHR 诊断所需的专业知识。
我们建议开发一种新的精神病症状域敏感(PSDS)电池,优先考虑以下任务:
显示与定义精神病的症状的相关性并与神经生物系统相关
与这些症状有关的计算机制。为了促进可访问性,我们利用行为任务
可以通过互联网进行管理;这将为以后广泛的研究测试奠定基础
筛选将确定那些最需要深入评估的人。为了实现这个目标,我们首先需要
确定哪些任务可有效预测病程以及该策略与已发表的策略相比如何
预测方法。我们建议招募 500 名 CHR 参与者、500 名寻求帮助的个人和 500 名
跨 5 个地点的健康控制,目标如下: 目标 1A) 通过以下方式开发精神病风险计算器:
机器学习 (ML) 方法在 PSDS 电池测量中的应用。在一次探索性的
ML历史分析,我们将确定PSDS与自我报告措施相结合的附加值
预测因子;目标 1B)我们将评估风险计算器分数的组间差异并做出假设
CHR 组的风险计算器分数将不同于寻求帮助组和健康对照组。我们进一步
假设 CHR 转换器的风险计算器分数将与 CHR 组显着不同
非皈依者、寻求帮助和健康控制。纳入寻求帮助小组对于
将风险计算器转化为临床实践,其目标是区分那些风险最大的人
患有其他形式精神病理学的精神病;目标 1C):评估基线 PSDS
表现与 2 年后检查的症状结果相关:1) 症状恶化被视为
连续变量,以及 2) 转变为精神病。我们假设 PSDS 计算器: 1) 将预测
症状过程,2) 转化者和非转化者之间观察到的差异会更大
PSDS 计算器优于 NAPLS 计算器。目标 2) 使用如上所述的 ML 方法来开发计算器
预测:2A)社交,以及,2B)角色功能恶化,两者均在两年内观察到。因为消极
与积极症状相比,与功能结果的联系更紧密,我们预测消极机制任务将是这两个领域功能衰退的最强预测因子。该项目将提供下一代 CHR 电池,与疾病机制相关并由尖端技术提供动力可用于促进尽早检测精神病风险的计算方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VIJAY A MITTAL其他文献
VIJAY A MITTAL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VIJAY A MITTAL', 18)}}的其他基金
2/5 CAPER Computerized assessment of psychosis risk
2/5 CAPER 精神病风险的计算机化评估
- 批准号:
10592322 - 财政年份:2020
- 资助金额:
$ 39.57万 - 项目类别:
2/5 CAPER Computerized assessment of psychosis risk
2/5 CAPER 精神病风险的计算机化评估
- 批准号:
9978241 - 财政年份:2020
- 资助金额:
$ 39.57万 - 项目类别:
An examination of psychomotor disturbance in current and remitted MDD: An RDoC Study
当前和缓解的 MDD 中精神运动障碍的检查:一项 RDoC 研究
- 批准号:
9754473 - 财政年份:2019
- 资助金额:
$ 39.57万 - 项目类别:
Prodromal Inventory for Negative Symptoms (PINS): A Development and Validation Study
阴性症状前驱清单 (PINS):开发和验证研究
- 批准号:
10528461 - 财政年份:2019
- 资助金额:
$ 39.57万 - 项目类别:
An examination of psychomotor disturbance in current and remitted MDD: An RDoC Study
当前和缓解的 MDD 中精神运动障碍的检查:一项 RDoC 研究
- 批准号:
10374003 - 财政年份:2019
- 资助金额:
$ 39.57万 - 项目类别:
An examination of psychomotor disturbance in current and remitted MDD: An RDoC Study
当前和缓解的 MDD 中精神运动障碍的检查:一项 RDoC 研究
- 批准号:
9910463 - 财政年份:2019
- 资助金额:
$ 39.57万 - 项目类别:
Prodromal Inventory for Negative Symptoms (PINS): A Development and Validation Study
阴性症状前驱清单 (PINS):开发和验证研究
- 批准号:
10320426 - 财政年份:2019
- 资助金额:
$ 39.57万 - 项目类别:
An examination of psychomotor disturbance in current and remitted MDD: An RDoC Study
当前和缓解的 MDD 中精神运动障碍的检查:一项 RDoC 研究
- 批准号:
10596065 - 财政年份:2019
- 资助金额:
$ 39.57万 - 项目类别:
Prodromal Inventory for Negative Symptoms (PINS): A Development and Validation Study
阴性症状前驱清单 (PINS):开发和验证研究
- 批准号:
10031573 - 财政年份:2019
- 资助金额:
$ 39.57万 - 项目类别:
2/3 Community psychosis risk screening: An instrument development study
2/3 社区精神病风险筛查:仪器开发研究
- 批准号:
9285347 - 财政年份:2017
- 资助金额:
$ 39.57万 - 项目类别:
相似海外基金
CRISPR-Cas Editing as a Genetic Cure for Autosomal Dominant Polycystic Kidney Disease
CRISPR-Cas 编辑作为常染色体显性多囊肾病的基因治疗
- 批准号:
10822502 - 财政年份:2023
- 资助金额:
$ 39.57万 - 项目类别:
Coronary plaque changes with statin and colchicine among people with high polygenic risk- a mechanistic pilot study
他汀类药物和秋水仙碱对高多基因风险人群的冠状动脉斑块变化——一项机制试点研究
- 批准号:
10736120 - 财政年份:2023
- 资助金额:
$ 39.57万 - 项目类别:
Gabapentinoid/opioid mixtures: abuse and toxicity
加巴喷丁/阿片类混合物:滥用和毒性
- 批准号:
10639396 - 财政年份:2023
- 资助金额:
$ 39.57万 - 项目类别:
Milk fat globule-EGF factor 8 and hepatocyte apoptosis-induced liver wound healing response
乳脂肪球-EGF因子8与肝细胞凋亡诱导的肝脏创面愈合反应
- 批准号:
10585802 - 财政年份:2023
- 资助金额:
$ 39.57万 - 项目类别:
The lipid hydrolase NAAA as a target for non-addictive analgesic medications
脂质水解酶 NAAA 作为非成瘾性镇痛药物的靶标
- 批准号:
10584428 - 财政年份:2023
- 资助金额:
$ 39.57万 - 项目类别: