Channel activity during skin morphogenesis
皮肤形态发生过程中的通道活动
基本信息
- 批准号:10400039
- 负责人:
- 金额:$ 35.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AffectAnteriorArchitectureBackBiochemicalBiophysicsBirdsCalcium ChannelCellsComplexConsequentialismCoturnix japonicaCoupledDermalDevelopmentDiffusionDistalEmbryoEvaluationFeathersFeedbackFibroblast Growth FactorFutureGap JunctionsGene ActivationGenetic TranscriptionGiant CellsHairIon ChannelLearningMammalsMapsModelingMorphogenesisNatural regenerationOrganPaperPatternPattern FormationPeriodicityPhenotypePigmentation physiologic functionPigmentsPlayPopulationProcessQuailReactionReadabilityResearchRoleSignal TransductionSkinStructureStudy modelsTimeTissuesTranslatingVisualizationWorkappendagebioelectricitycell behaviorcell motilityelectric fieldelectropotentialgap junction channelinhibitorinsightmelanocytemillimetermillisecondmorphogensmouse modelmultidisciplinarynoveloptogeneticsprogenitorprogrammed cell death protein 1recruitregenerativeskin morphogenesisskin organogenesisskin regenerationsuccesstransmission processvectorwoundwound healing
项目摘要
Our long-term objective is to understand the principles that orchestrate skin morphogenesis in development
and wound regeneration. The understanding of biochemical signaling is well advanced. Yet, research into the
roles of non-neural bioelectricity lags behind, although evidence for a role of bioelectricity in development,
regeneration (McLaughlin and Levin 2018 16; Li et al., 2020 5) and wound healing (Zhao et al. 2012 32) is
growing. Our research objective is to study the mechanisms underlying the development and regeneration of
skin appendages. In two of our recent research papers, we were inspired to see bioelectricity in action in two
tissue patterning processes. First, the orientation of elongating feather buds is regulated by synchronization of
oscillating calcium channel activities in bud dermal cells, which is controlled by epidermal Shh signaling (Li et
al., 2018 11). Second, the skin frequently shows pigment stripes along the body. The size and spacing of
longitudinal pigmentation stripes in Japanese quail was recently shown to be controlled autonomously within
melanocyte progenitor populations in a gap junction-dependent manner (Inaba et al., 2019 12). At the time
these periodic black/yellow stripes form in embryos, the spacing is in millimeters, a large-scale patterning
process that cannot be explained by the classical Turing reaction-diffusion mechanism (patterning in
micrometer range). The results led us to think hard about how large-scale tissue architecture is built. While
localized signaling centers involving morphogens (e.g., WNT, BMP, FGF) were shown to initiate periodic
patterning of feather/hair buds, some unidentified mechanism capable of spanning large distances dynamically
must work together to transduce the information over the long-distance scale (Inaba and Chuong, 2019 15).
Bioelectricity work here provides a clue. Thus, we organized a multi-disciplinary team to analyze the
mechanisms on how biochemical and bioelectric signals integrate to achieve the large-scale tissue patterning.
We hypothesize, among other possibilities, transient bioelectrical signaling across gap-junction-coupled cell
collectives may allow rapid, long-distance signaling with minimal decrement. Electropotential gradients are
harnessed to propagate signals rapidly over the long distance (millimeters in milliseconds) to regulate
intracellular messengers and pattern the much larger morphogenetic field. The developing avian skin explants
provide an excellent model because of the quantifiable distinct patterns, planar topology for easier channel
activity visualization, electric current perturbation and optogenetic gene activation – not easy in the mouse
model. Experimentally, we will first gauge the endogenous bioelectric landscape and evaluate the importance
of bioelectricity in these two tissue patterning processes (Aim 1A, 2A). Then we will study how ion channels /
gap junctions cross-talk with biochemical signals to achieve tissue patterns (Aim 1B, 2B). The work is likely to
produce new findings and insights for future applications to use bioelectricity to benefit wound regeneration.
我们的长期目标是了解在发育过程中协调皮肤形态发生的原理
然而,对生化信号传导的了解已经很深入。
非神经生物电的作用虽然滞后,但有证据表明生物电在发育中的作用,
再生(McLaughlin 和 Levin 2018 16;Li 等人,2020 5)和伤口愈合(Zhao 等人 2012 32)
我们的研究目标是研究生长和再生的机制。
在我们最近的两篇研究论文中,我们受到启发,看到生物电在两个器官中发挥作用。
首先,伸长的羽毛芽的方向是由同步调节的。
芽真皮细胞中钙通道的振荡活动,由表皮 Shh 信号传导控制(Li 等
al., 2018 11) 其次,皮肤经常出现沿着身体的色素条纹的大小和间距。
最近表明,日本鹌鹑的纵向色素沉着条纹可以自主地在
黑素细胞祖细胞群以间隙连接依赖性方式(Inaba et al., 2019 12)。
这些周期性的黑/黄条纹在胚胎中形成,间距以毫米为单位,是一种大规模的图案
经典图灵反应扩散机制无法解释的过程(模式化)
微米范围)。结果让我们认真思考如何构建大规模的组织结构。
涉及形态发生素(例如 WNT、BMP、FGF)的局部信号中心被证明会启动周期性
羽毛/发芽的图案,一些能够动态跨越大距离的不明机制
必须共同努力才能在长距离范围内转换信息(Inaba 和 Chuong,2019 15)。
生物电工作在这里提供了线索,因此,我们组织了一个多学科团队来分析。
生化和生物电信号如何整合以实现大规模组织图案化的机制。
除其他可能性外,我们还蓬勃发展了跨间隙连接耦合细胞的瞬态生物电信号传导
集体可以允许以最小的电势梯度进行快速、长距离的信号传递。
利用长距离(毫米或毫秒)快速传播信号来调节
细胞内信使并形成更大的形态发生场,正在发育的鸟类皮肤外植体。
提供了一个优秀的模型,因为可量化的不同模式,平面拓扑更容易通道
活动可视化、电流扰动和光遗传学基因激活——在小鼠中并不容易
在实验上,我们将首先测量内源生物电景观并评估其重要性。
然后我们将研究离子通道 / 生物电在这两个组织图案化过程中的作用(目标 1A、2A)。
间隙连接与生化信号相互作用以实现组织模式(目标 1B、2B)。
为未来利用生物电促进伤口再生的应用提供新的发现和见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROBERT HSIU-PING CHOW其他文献
ROBERT HSIU-PING CHOW的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROBERT HSIU-PING CHOW', 18)}}的其他基金
Evaluation of Cellular Heterogeneity Using Patchclamp and RNA-Seq of Single Cells
使用膜片钳和单细胞 RNA-Seq 评估细胞异质性
- 批准号:
9107512 - 财政年份:2012
- 资助金额:
$ 35.94万 - 项目类别:
Evaluation of Cellular Heterogeneity Using Patchclamp and RNA-Seq of Single Cells
使用膜片钳和单细胞 RNA-Seq 评估细胞异质性
- 批准号:
8549305 - 财政年份:2012
- 资助金额:
$ 35.94万 - 项目类别:
Evaluation of Cellular Heterogeneity Using Patchclamp and RNA-Seq of Single Cells
使用膜片钳和单细胞 RNA-Seq 评估细胞异质性
- 批准号:
8414144 - 财政年份:2012
- 资助金额:
$ 35.94万 - 项目类别:
Evaluation of Cellular Heterogeneity Using Patchclamp and RNA-Seq of Single Cells
使用膜片钳和单细胞 RNA-Seq 评估细胞异质性
- 批准号:
8701402 - 财政年份:2012
- 资助金额:
$ 35.94万 - 项目类别:
Directed differentiation of human embryonic stem cells into glucose-responsive be
人胚胎干细胞定向分化为葡萄糖反应性细胞
- 批准号:
8092912 - 财政年份:2011
- 资助金额:
$ 35.94万 - 项目类别:
相似国自然基金
蚕丝和家蚕前部丝腺纺丝液的原位超微结构研究
- 批准号:32302816
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
丘脑室旁核前部TGR5在慢性应激诱导的焦虑样行为中的作用及机制
- 批准号:82373860
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
家蚕前部丝腺特异表皮蛋白在角质层内膜构建及蚕丝纤维化中的功能研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
谷氨酸能系统调节的前部岛叶皮层神经振荡在针刺缓解慢性疼痛中的作用
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多模态影像学的视乳头区域微循环灌注评估及NAION发病机制研究
- 批准号:81800840
- 批准年份:2018
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Deciphering Mechanisms of Limb Malformations Caused by Noncoding Variants In Vivo
体内非编码变异引起肢体畸形的破译机制
- 批准号:
10538362 - 财政年份:2023
- 资助金额:
$ 35.94万 - 项目类别:
Translational Approach to Studying miRNA functions in sACC and amygdala in patients with BPD
研究 BPD 患者 sACC 和杏仁核 miRNA 功能的转化方法
- 批准号:
10635583 - 财政年份:2023
- 资助金额:
$ 35.94万 - 项目类别:
Probing negative affect circuits in humans using 7T fMRI
使用 7T fMRI 探测人类的负面影响回路
- 批准号:
10752127 - 财政年份:2023
- 资助金额:
$ 35.94万 - 项目类别:
Prefrontal-cingulate functional networks in aging monkeys: neural circuit substrates of cognitive aging
衰老猴子的前额叶-扣带回功能网络:认知衰老的神经回路基质
- 批准号:
10726860 - 财政年份:2023
- 资助金额:
$ 35.94万 - 项目类别: