Ultrasound-Controlled Immunotherapy for Targeted Treatment of Solid Tumors
超声控制免疫疗法用于实体瘤的靶向治疗
基本信息
- 批准号:10399420
- 负责人:
- 金额:$ 5.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-15 至 2023-06-14
- 项目状态:已结题
- 来源:
- 关键词:AddressAdverse effectsAnimal ModelAntigen TargetingBasic ScienceBlood VesselsCell TherapyCell physiologyCellsCellular immunotherapyCessation of lifeClinical TrialsCommunicationDNADataDevelopmentDiagnosticDisease modelERBB2 geneElementsEngineeringEnterobacteria phage P1 Cre recombinaseEnvironmentExposure toFeedbackFocused UltrasoundFocused Ultrasound TherapyFutureGene ExpressionGenesGeneticGoalsHeat-Shock ResponseHeatingHematologic NeoplasmsImmuneImmune systemImmunologyImmunomodulatorsImmunotherapyIn VitroInterleukin-2LifeLocationMalignant NeoplasmsMammalian CellMentorsMethodsModelingMusOncologyOperative Surgical ProceduresOrganismOutputPerformancePeripheralPharmaceutical PreparationsProductionProteinsResolutionSKBR3SafetySignal TransductionSolid NeoplasmStimulusStructure of parenchyma of lungSyndromeSynthetic GenesSystemT cell therapyT-LymphocyteTechniquesTechnologyTemperatureTestingTherapeuticTherapeutic AgentsTimeTissuesToxic effectTrainingTrans-ActivatorsTransgenesTranslational ResearchTumor AntigensWorkautocrinebasecancer immunotherapycancer therapycell typecellular engineeringchimeric antigen receptor T cellsclinical translationcytokinecytokine therapydesigndirect applicationengineered T cellsexperimental studygenetic elementimprovedin vitro testingin vivomillimetermouse modelmultidisciplinarynoveloperationoverexpressionprogramspromoterprotein expressionrecruitremote controlspatiotemporalsuccesssynthetic biologytargeted treatmenttherapeutic genetherapeutic proteintime usetooltumorultrasound
项目摘要
Project Summary
Advances in synthetic biology have enabled the development of increasing numbers of cell-based diagnostic
and therapeutic tools. However, controlling these cells in vivo is difficult and current methods to communicate
with engineered cells either suffer from poor spatiotemporal resolution or require invasive operations. In order to
improve safety and efficacy of cell-based therapies, robust methods to control gene expression in vivo are
required. Temperature is a unique communication signal as it can be modulated with millimeter precision deep
within tissues non-invasively using focused ultrasound (FUS). In addition, cells have already evolved the ability
to sense changes in temperature through heat shock promoters (HSPs). These genetic elements are ubiquitous
across organisms, providing a platform to develop genetic circuits that will activate upon FUS heating. Combining
the spatial control offered by FUS with cellular engineering to confer thermal sensitivity will allow us to create
thermally responsive cells that will activate in specific locations following FUS treatment.
One rapidly growing field that could benefit from spatially controlled gene expression is cell-based cancer
immunotherapy. Immunotherapy has recently emerged as a promising new class of cancer therapies with
transformative results in hematological malignancies. However, engineered cell-based immunotherapies such
as CAR T-cells and immunomodulatory agents such as cytokines must overcome significant challenges before
becoming more widely applicable for solid tumors. In recent clinical trials, CAR T-cells have attacked healthy
tissues if their targeted antigen is not tumor limited, resulting in massive peripheral toxicity and death. Systemic
cytokine therapy can also cause life-threatening adverse effects such as vascular leak syndrome. Both types of
immunotherapy could benefit from spatially controlled therapeutic expression.
This project’s overall goal is to develop HSP-driven circuits in primary T-cells that will allow thermal stimuli
delivered by FUS to active therapeutic genes expression. Initial experiments will focus on developing T-cells in
vitro that will respond to bulk heating by transiently releasing cytokine to boost CAR performance in an autocrine
fashion or activating permanent CAR expression specifically in the tumor. We will accomplish this by developing
HSP driven circuits that feature drug induced transactivators or Cre Recombinase. After validating these circuits
in vitro, we will test their performance upon FUS treatment in vivo using a murine SKBR3 tumor model and an
anti-HER2 CAR. This model will allow us to develop and demonstrate the performance of robust, FUS-activated
primary T-cells with two distinct payload outputs. This proposed approach represents a novel combination of
cellular engineering and therapeutic ultrasound to spatiotemporally control cell-based immunotherapies with
direct application to solid tumor treatment. This technology also has substantial potential for further development
and adaption to other cell types which may facilitate both basic science and translational research.
项目概要
合成生物学的进步使得越来越多的基于细胞的诊断方法得以发展
然而,在体内控制这些细胞是困难的,并且是目前的沟通方法。
工程细胞要么时空分辨率较差,要么需要侵入性操作。
为了提高细胞疗法的安全性和有效性,控制体内基因表达的稳健方法是
温度是一种独特的通信信号,因为它可以以毫米级精度进行深度调制。
此外,细胞已经进化出这种能力。
通过热休克启动子(HSP)感知温度变化这些遗传元件无处不在。
跨生物体,提供一个开发遗传电路的平台,该电路将在 FUS 加热时激活。
FUS 通过细胞工程提供的空间控制赋予热敏感性,这将使我们能够创造
FUS 治疗后,热响应细胞将在特定位置激活。
细胞癌症是一个快速发展的领域,可以从空间控制的基因表达中受益
免疫疗法最近已成为一种有前途的新型癌症疗法。
然而,基于细胞的工程免疫疗法在血液恶性肿瘤中产生了革命性的结果。
因为 CAR T 细胞和细胞因子等免疫调节剂必须克服重大挑战
在最近的临床试验中,CAR T 细胞越来越广泛地应用于实体瘤。
如果其靶向抗原不限于肿瘤组织,则会导致大量外周毒性和全身死亡。
细胞因子治疗还可导致危及生命的综合征不良反应,例如两种类型的血管渗漏。
免疫疗法可以受益于空间控制的治疗表达。
该项目的总体目标是在原代 T 细胞中开发 HSP 驱动电路,以允许热刺激
最初的实验将集中于开发 T 细胞。
体外,将通过瞬时释放细胞因子来响应大量加热,以提高自分泌中的 CAR 性能
我们将通过开发来实现这一目标。
具有药物诱导反式激活剂或 Cre 重组酶的 HSP 驱动电路在验证这些电路后。
在体外,我们将使用鼠 SKBR3 肿瘤模型和
该模型将使我们能够开发并展示强大的 FUS 激活的性能。
具有两个不同有效负载输出的初级 T 细胞。这种提出的方法代表了一种新颖的组合。
细胞工程和治疗超声来时空控制基于细胞的免疫疗法
该技术还具有进一步开发的巨大潜力。
以及对其他细胞类型的适应,这可能会促进基础科学和转化研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Justin Lee其他文献
Justin Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Justin Lee', 18)}}的其他基金
Deciphering biased agonistic activation of mu-opioid receptor by novel optogenetic hydrogen peroxide sensor
新型光遗传学过氧化氢传感器破译μ阿片受体的偏向激动激活
- 批准号:
10604662 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:
相似国自然基金
基于真实世界医疗大数据的中西药联用严重不良反应监测与评价关键方法研究
- 批准号:82274368
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
OR10G7错义突变激活NLRP3炎症小体致伊马替尼严重皮肤不良反应的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于隐狄利克雷分配模型的心血管系统药物不良反应主动监测研究
- 批准号:82273739
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于真实世界数据的创新药品上市后严重罕见不良反应评价关键方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
D.formicigenerans菌通过调控FoxP3-Treg影响PD-1抑制剂所致免疫相关不良反应的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing a novel disease-targeted anti-angiogenic therapy for CNV
开发针对 CNV 的新型疾病靶向抗血管生成疗法
- 批准号:
10726508 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:
Optogenetic and chemogenetic regulation of uterine vascular function
子宫血管功能的光遗传学和化学遗传学调控
- 批准号:
10785667 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:
Role of synaptic density in mediating the relation between social disconnection and late-life suicide risk
突触密度在调节社会脱节与晚年自杀风险之间关系中的作用
- 批准号:
10598338 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:
Understanding the Relationship Between Environmental Endocrine Disrupting Chemicals, Neuropsychiatric Outcomes, and Related Biological Processes in Depression
了解环境内分泌干扰化学物质、神经精神结果和抑郁症相关生物过程之间的关系
- 批准号:
10739590 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:
Perception of Dead Conspecifics modulates neural signaling and lifespan in Caenorhabditis elegans
对死亡同种的感知调节秀丽隐杆线虫的神经信号和寿命
- 批准号:
10828478 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别: