Tunable Synthetic ECMs for Investigating Stellate Cell Activation and Migration
用于研究星状细胞激活和迁移的可调谐合成 ECM
基本信息
- 批准号:10396228
- 负责人:
- 金额:$ 3.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdhesionsAffectAreaBehaviorBiocompatible MaterialsCause of DeathCell Culture TechniquesCell Differentiation processCell SeparationCell physiologyCellsCellular biologyCharacteristicsChronicCicatrixCirrhosisCommunicationDepositionDevelopmentDistantElasticityEnvironmentEtiologyEvolutionExtracellular MatrixFiberFibroblastsFibrosisGelGlassHealthHepatic Stellate CellHyaluronic AcidHydrogelsImpaired healingIn VitroIndividualKnowledgeLightLipidsLiverLiver FibrosisLiver diseasesMechanical StimulationMechanicsMediatingMediator of activation proteinMonitorMyofibroblastNatural regenerationOrgan failurePatientsPatternPhenotypePhysical environmentPlayPopulationPositioning AttributeProcessPropertyRetinoidsRoleSiteSmooth Muscle Actin Staining MethodStimulusSurfaceSystemTGFB1 geneTissuesTrainingTranslatingViral hepatitisWorkbasecareercell motilitychemical reactionchronic liver injurycrosslinkdensitydirectional cellexperiencefiber cellhealingimaging modalityin vivointerestliver injurymechanical propertiesmigrationnanofibernew therapeutic targetnon-alcoholic fatty liver diseaseprecursor cellrecruitresponsestellate celltransmission process
项目摘要
ABSTRACT
Liver fibrosis is an abnormal healing response to chronic liver injury and predisposes patients to cirrhosis,
which is a major cause of death worldwide. Although fibrosis has many etiologies, it only occurs after portal
fibroblasts and or hepatic stellate cells (HSCs) differentiate into myofibroblasts, a process termed activation.
HSCs are the major contributors to the myofibroblast population in fibrosis and chronic liver damage stimulates
continuous HSC activation, tissue contraction and excessive extracellular matrix (ECM) deposition, resulting in
fibrosis and organ failure. Thus, it is important to understand the factors that contribute to fibrosis progression
and HSC myofibroblast differentiation, such as the physical microenvironment. To date, in vitro studies have
shown that substrate elasticity is a critical mediator of myofibroblast differentiation, using hydrogels of varied
mechanics. This is thought to mimic the changes in liver stiffness that occurs during fibrosis; however, cells in
the liver reside in a fibrous 3D ECM, which may not be recapitulated with seeding atop smooth hydrogels.
Importantly, fibrous materials may be manipulated by cells and have non-linear mechanics that enable long-
range force transmission through fiber alignment. Thus, the objective of this proposal is to develop tunable
synthetic fibrous materials based on hyaluronic acid that mimic the ECM of the liver to investigate how static
and dynamic fiber mechanics influence HSC activation and migration. These proposed fibrous systems are
unique from both natural ECMs that are difficult to tailor and from typically rigid synthetic fibers. The first Aim of
this proposal will be the development of nanofiber cell culture substrates with a range of mechanical properties.
It is hypothesized that stiffer nanofibers will limit cell fiber remodeling and activation, while softer nanofibers will
permit fiber remodeling/recruitment and activation under the fibrogenic stimulus TGFb1. Aim 2 of this proposal
will be the development of nanofibrous materials that can be locally stiffened around HSCs using light triggered
chemical reactions to mimic the dynamic crosslinking of ECM that occurs during fibrosis. It is hypothesized that
HSCs will migrate directionally based on local fiber mechanical properties. Together, the materials developed
here will provide new platforms to study fibrosis and healing, inspire the development of new fibrosis therapies,
and provide training within new materials and HSC biology to the applicant.
抽象的
肝纤维化是对慢性肝损伤的异常愈合反应,使患者容易患上肝硬化,
这是全世界死亡的一个主要原因。尽管纤维化有多种病因,但仅发生在门静脉后
成纤维细胞和/或肝星状细胞 (HSC) 分化为肌成纤维细胞,这一过程称为激活。
HSC 是肌成纤维细胞群纤维化的主要贡献者,慢性肝损伤刺激
持续的 HSC 激活、组织收缩和过度的细胞外基质 (ECM) 沉积,导致
纤维化和器官衰竭。因此,了解导致纤维化进展的因素很重要
和HSC肌成纤维细胞分化,如物理微环境。迄今为止,体外研究已
研究表明,基质弹性是肌成纤维细胞分化的关键介质,使用不同的水凝胶
机械师。这被认为模仿了纤维化过程中肝脏硬度的变化。然而,细胞中
肝脏位于纤维状 3D ECM 中,这可能无法通过在光滑水凝胶上播种来重现。
重要的是,纤维材料可以由细胞操纵,并具有非线性力学,可以实现长期
通过光纤对准进行范围力传输。因此,该提案的目标是开发可调谐的
基于透明质酸的合成纤维材料模拟肝脏的 ECM,以研究静态如何
动态纤维力学影响 HSC 的激活和迁移。这些提出的纤维系统是
不同于难以定制的天然 ECM 和典型的刚性合成纤维。第一个目标
该提案将开发具有一系列机械性能的纳米纤维细胞培养基质。
据推测,较硬的纳米纤维将限制细胞纤维的重塑和激活,而较软的纳米纤维将限制细胞纤维的重塑和激活。
允许纤维在纤维形成刺激 TGFb1 下重塑/募集和激活。本提案的目标 2
将开发纳米纤维材料,该材料可以使用光触发在 HSC 周围局部硬化
化学反应模拟纤维化过程中发生的 ECM 动态交联。假设
HSC 将根据局部纤维机械性能定向迁移。共同开发的材料
这里将提供研究纤维化和愈合的新平台,激发新纤维化疗法的开发,
并为申请人提供新材料和 HSC 生物学方面的培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew David Davidson其他文献
Matthew David Davidson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 3.52万 - 项目类别:
Mechanical Modulation of Cell Migrations by DNA Nanoassemblies
DNA 纳米组件对细胞迁移的机械调节
- 批准号:
10659333 - 财政年份:2023
- 资助金额:
$ 3.52万 - 项目类别:
Endothelial-Leukocyte Adhesion in CAR T Cell Treatment Associated Neurotoxicity
CAR T 细胞治疗相关神经毒性中的内皮-白细胞粘附
- 批准号:
10735681 - 财政年份:2023
- 资助金额:
$ 3.52万 - 项目类别:
Regulation of Adherent Cell Proliferation by Matrix Viscoelasticity
基质粘弹性对贴壁细胞增殖的调节
- 批准号:
10735701 - 财政年份:2023
- 资助金额:
$ 3.52万 - 项目类别:
Deep phenotyping of fusion oncoprotein-driven pediatric cancer metastasis with single-cell proteomics
利用单细胞蛋白质组学对融合癌蛋白驱动的儿科癌症转移进行深度表型分析
- 批准号:
10687394 - 财政年份:2023
- 资助金额:
$ 3.52万 - 项目类别: