Mitochondrial Recovery after Acute Kidney Injury Needs Ribonucleotide Reductase
急性肾损伤后的线粒体恢复需要核糖核苷酸还原酶
基本信息
- 批准号:10396045
- 负责人:
- 金额:$ 23.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:2&apos-DeoxythymidineAcute Renal Failure with Renal Papillary NecrosisAffectApoptosisAtrophicBrainBypassCatalytic DomainCell Culture TechniquesCell HypoxiaCellsChronic Kidney FailureCodeCultured CellsCytosolDNADNA DamageDNA RepairDNA biosynthesisDataDeoxycytidineDeoxyguanosineDevelopmentDialysis procedureDiseaseEnzymesFailureGenesGrowthHealthHealthcareHypoxiaImpairmentIncidenceInjuryInjury to KidneyInterphase CellInvestigationKidneyKidney DiseasesKidney FailureKnockout MiceLeadLesionLoxP-flanked alleleMediatingMembrane ProteinsMitochondriaMitochondrial DNAMitochondrial DNA depletion syndromesModelingMolecularMorbidity - disease rateMusMuscular AtrophyMutationNormal CellNuclearNull LymphocytesOxidantsOxygenPINK1 geneParkinPathologicPathologyPathway interactionsPhenotypeProcessProductionProteinsRRM1 geneRRM2 geneRecoveryRegimenRegulationReperfusion InjuryReporterResearchRetinaRibonucleotide ReductaseRibonucleotide Reductase SubunitRiskRoleStressSuperoxidesSupplementationTP53 geneTherapeuticTherapeutic AgentsTransgenesTransplantationTreatment EfficacyTubular formationUndifferentiatedcancer cellcell growthdeoxyribonucleoside triphosphateefficacy testingimprovedin vivoinsightmolecular pathologymortalitymouse modelnoveloverexpressionoxidant stresspreservationpreventrenal hypoxiarepairedrespiratory proteinresponsetripolyphosphate
项目摘要
PROJECT SUMMARY/ABSTRACT
Significance: Tubule atrophy underlies progression of acute kidney injury (AKI) to chronic kidney disease. The
basis for tubule atrophy after AKI is unknown. We identified a pathology involving RRM2B, alternate regulatory
subunit of ribonucleotide reductase (RNR) as a basis for tubule atrophy after AKI. Cell culture data suggest that
molecular bypass of RNR by deoxynucleosides can produce deoxynucleoside triphosphates (dNTPs) for DNA
synthesis and repair by oxygen independent salvage pathways after AKI to promote tubule recovery.
RNR produces dNTPs. Its classical regulatory subunit RRM2 is inhibited by hypoxia, but the hypoxia tolerant
RRM2B can substitute for RRM2 to maintain dNTPs during hypoxia to prevent nuclear and mitochondrial DNA
damage and preserve cell integrity. RRM2B is induced by hypoxia in cultured cells. Hypoxia mediated increase
of mitochondrial superoxide may induce RRM2B as a beneficial adaptation. A regulatory role for mitochondrial
superoxide was suggested by our finding that MitoPQ, which increases superoxide selectively in mitochondria,
markedly increased cellular RRM2B protein content.
The benefits afforded by RRM2B in hypoxic cells would be abrogated if RRM2B is not available. In support, we
showed that deletion of RRM2B from cultured tubule cells increases DNA damage during hypoxia, and prevents
recovery during reoxygenation. Deoxynucleosides rescued such cells from DNA damage, decreased injury and
promoted recovery. We showed also that tubule atrophy after AKI is accompanied by marked RRM2B depletion
and DNA damage. Since recovering kidneys are hypoxic, RNR inhibition is expected. In such kidneys RRM2B
loss in tubules (rather than an adaptive increase) will have deleterious consequences. Thus, RRM2B loss after
AKI may be the cause for tubule atrophy. While the cause for RRM2B decline in tubules after AKi is unclear, its
importance for recovery requires investigation. To this end, we have three Specific Aims.
Aim 1. We will utilize mouse models of RRM2B deletion and overexpression in tubules to investigate its role in
recovery from AKI.
Aim 2. We will use cultured tubule cells with RRM2B deletion and overexpression, and deoxynucleoside
supplementation, to investigate the role of RNR activity, RRM2B levels and salvage synthesis of dNTPs in
cellular responses to hypoxia. To examine the role of mitochondrial oxidants in adaptation to stress, we will use
Mito-PQ, a selective inducer of mitochondrial superoxide, to elucidate mechanisms of RRM2B regulation.
Aim 3. We will test the efficacy of treatment with deoxynucleosides to promote recovery from ischemic AKI.
Impact: The studies we propose will yield new insights into cellular mechanisms that determine successful or
failed tubule recovery from AKI and possibly identify deoxynucleosides as novel useful therapeutic agents.
项目概要/摘要
意义:肾小管萎缩是急性肾损伤 (AKI) 进展为慢性肾脏疾病的基础。这
AKI 后肾小管萎缩的基础尚不清楚。我们发现了一种涉及 RRM2B(替代监管)的病理学
核糖核苷酸还原酶 (RNR) 亚基是 AKI 后肾小管萎缩的基础。细胞培养数据表明
脱氧核苷对 RNR 的分子旁路可产生 DNA 脱氧核苷三磷酸 (dNTP)
AKI 后通过不依赖于氧的挽救途径进行合成和修复,以促进肾小管恢复。
RNR 产生 dNTP。其经典调节亚基RRM2受到缺氧抑制,但耐缺氧
RRM2B可以替代RRM2在缺氧期间维持dNTPs以防止核和线粒体DNA
损伤并保持细胞完整性。 RRM2B 是由培养细胞缺氧诱导的。缺氧介导的增加
线粒体超氧化物的增加可能会诱导 RRM2B 作为一种有益的适应。线粒体的调节作用
我们的发现表明 MitoPQ 可以选择性地增加线粒体中的超氧化物,
细胞RRM2B蛋白含量显着增加。
如果 RRM2B 不可用,RRM2B 在缺氧细胞中提供的益处将被取消。为了支持,我们
结果表明,从培养的肾小管细胞中删除 RRM2B 会增加缺氧期间的 DNA 损伤,并防止
再氧合期间恢复。脱氧核苷可以使这些细胞免于 DNA 损伤,减少损伤并
促进了康复。我们还发现 AKI 后的肾小管萎缩伴随着明显的 RRM2B 耗竭
和DNA损伤。由于恢复中的肾脏处于缺氧状态,因此预计会出现 RNR 抑制。在这样的肾脏中 RRM2B
肾小管的损失(而不是适应性的增加)将产生有害的后果。因此,RRM2B 损失后
AKI 可能是肾小管萎缩的原因。虽然 AKi 后肾小管 RRM2B 下降的原因尚不清楚,但其
对于恢复的重要性需要进行调查。为此,我们有三个具体目标。
目标 1. 我们将利用 RRM2B 在肾小管中缺失和过度表达的小鼠模型来研究其在肾小管中的作用
从 AKI 中恢复。
目标 2. 我们将使用具有 RRM2B 缺失和过表达以及脱氧核苷的培养肾小管细胞
补充,以研究 RNR 活性、RRM2B 水平和 dNTP 补救合成的作用
细胞对缺氧的反应。为了检查线粒体氧化剂在适应应激中的作用,我们将使用
Mito-PQ 是线粒体超氧化物的选择性诱导剂,用于阐明 RRM2B 调节机制。
目标 3. 我们将测试脱氧核苷治疗促进缺血性 AKI 恢复的功效。
影响:我们提出的研究将对决定成功或失败的细胞机制产生新的见解。
肾小管从 AKI 中恢复失败,并可能将脱氧核苷鉴定为新型有用的治疗剂。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MANJERI A VENKATACHALAM其他文献
MANJERI A VENKATACHALAM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MANJERI A VENKATACHALAM', 18)}}的其他基金
Mitochondrial Recovery after Acute Kidney Injury Needs Ribonucleotide Reductase
急性肾损伤后的线粒体恢复需要核糖核苷酸还原酶
- 批准号:
9974229 - 财政年份:2020
- 资助金额:
$ 23.25万 - 项目类别:
Mitochondrial Recovery after Acute Kidney Injury Needs Ribonucleotide Reductase
急性肾损伤后的线粒体恢复需要核糖核苷酸还原酶
- 批准号:
10159900 - 财政年份:2020
- 资助金额:
$ 23.25万 - 项目类别:
Pathogenesis of tubule atrophy and failed recovery after acute kidney injury
急性肾损伤后肾小管萎缩及恢复失败的发病机制
- 批准号:
9198226 - 财政年份:2016
- 资助金额:
$ 23.25万 - 项目类别:
MECHANISMS OF PROTECTION BY GLYCINE AGAINST CELL DEATH
甘氨酸防止细胞死亡的机制
- 批准号:
2458846 - 财政年份:1994
- 资助金额:
$ 23.25万 - 项目类别:
MECHANISMS OF PROTECTION BY GLYCINE AGAINST CELL DEATH
甘氨酸防止细胞死亡的机制
- 批准号:
2148695 - 财政年份:1994
- 资助金额:
$ 23.25万 - 项目类别:
MECHANISMS OF PROTECTION BY GLYCINE AGAINST CELL DEATH
甘氨酸防止细胞死亡的机制
- 批准号:
2749520 - 财政年份:1994
- 资助金额:
$ 23.25万 - 项目类别:
MECHANISMS OF PROTECTION BY GLYCINE AGAINST CELL DEATH
甘氨酸防止细胞死亡的机制
- 批准号:
2148693 - 财政年份:1994
- 资助金额:
$ 23.25万 - 项目类别:
MECHANISMS OF PROTECTION BY GLYCINE AGAINST CELL DEATH
甘氨酸防止细胞死亡的机制
- 批准号:
2148694 - 财政年份:1994
- 资助金额:
$ 23.25万 - 项目类别:
INTERNATIONAL SATELLITE SYMPOSIUM ON ACUTE RENAL FAILURE
急性肾衰竭国际卫星研讨会
- 批准号:
3434731 - 财政年份:1993
- 资助金额:
$ 23.25万 - 项目类别:
相似国自然基金
化学修饰AS1411的设计、合成及生物学性质研究
- 批准号:21502104
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
Let-7a联合18F-FLT预测局部晚期非小细胞肺癌放疗加速再增殖
- 批准号:81502667
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
荧光铜纳米粒的发卡型DNA模板设计和应用
- 批准号:21505023
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
代谢与增殖显像指导非小细胞肺癌个体化放疗靶区剂量雕刻的分子机制及应用研究
- 批准号:81472810
- 批准年份:2014
- 资助金额:74.0 万元
- 项目类别:面上项目
克隆及功能分析拟南芥精细胞中磷酸化dTMP的激酶
- 批准号:31200234
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
DELINEATING THE ROLE OF THE HOMOCYSTEINE-FOLATE-THYMIDYLATE SYNTHASE AXIS AND URACIL ACCUMULATION IN AFRICAN AMERICAN PROSTATE TUMORS
描述同型半胱氨酸-叶酸-胸苷酸合成酶轴和尿嘧啶积累在非裔美国人前列腺肿瘤中的作用
- 批准号:
10723833 - 财政年份:2023
- 资助金额:
$ 23.25万 - 项目类别:
Using ex vivo, in vivo models and patient mutations to interrogate pancreatic exocrine-endocrine cross talk
使用离体、体内模型和患者突变来探究胰腺外分泌-内分泌串扰
- 批准号:
10706558 - 财政年份:2022
- 资助金额:
$ 23.25万 - 项目类别:
Using ex vivo, in vivo models and patient mutations to interrogate pancreatic exocrine-endocrine cross talk
使用离体、体内模型和患者突变来探究胰腺外分泌-内分泌串扰
- 批准号:
10594228 - 财政年份:2022
- 资助金额:
$ 23.25万 - 项目类别:
MTR1: A Dinucleotide Substrate Enhancement and Molecular ByPass Therapy for Thymidine Kinase 2 Deficiency
MTR1:针对胸苷激酶 2 缺乏症的二核苷酸底物增强和分子旁路疗法
- 批准号:
10705703 - 财政年份:2022
- 资助金额:
$ 23.25万 - 项目类别: