Regulation of cell growth and proliferation
细胞生长和增殖的调节
基本信息
- 批准号:10395545
- 负责人:
- 金额:$ 75.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAddressAnimalsAutoimmune DiseasesBackBindingBiogenesisCCNE2 geneCDC45L geneCatalogsCell CycleCell Cycle ProgressionCell ProliferationCell divisionCellsCellular biologyComplexCoupledDNA biosynthesisDegenerative DisorderDevelopmental BiologyDiagnosisDiseaseDrosophila genusE2F transcription factorsEnterocytesEpidermal Growth Factor ReceptorEpithelialFRAP1 geneFoundationsGene TargetingGenesGeneticGenetic TranslationGenomic approachGrantGrowthGrowth FactorHumanInfectionInflammationInflammatoryInsulinIntestinesMalignant NeoplasmsMetabolicMetabolismMitochondriaNational Institute of General Medical SciencesNatural regenerationOrganoidsPreventionProliferatingRNA InterferenceRegenerative responseResearchResearch SupportResourcesSignal TransductionStressTestingTissue EngineeringTissuesTranslatingWorkcell growthcell growth regulationchronic inflammatory diseaseclinically relevantcombatcytokinegastrointestinal epitheliumgenetic approachgenomic toolshuman diseasein vivointestinal epitheliumnovel strategiesregenerativeresponsestem cellstranscriptome sequencingtranslation factor
项目摘要
PROJECT SUMMARY
This MIRA/R35 application was conceived to replace R01 grants GM126033 and GM124434. These projects
address the regulation of cell growth and proliferation, a central topic in cell and developmental biology that is
relevant to the many human disorders in which cell growth is dysregulated (e.g. degenerative diseases,
inflammatory conditions, cancers). Our NIGMS-supported research reaches back to 1994, with the singular
objective to understand how cell proliferation is regulated in vivo, in the complex context of the animal body. Our
research addresses fundamental issues: how growth signaling drives cell growth, how cell growth-associated
metabolism regulates cell cycle progression, and how environmental, cellular and molecular interactions regulate
growth signaling activities in vivo. We primarily utilize genetic approaches in Drosophila, with a current focus on
intestinal epithelial renewal, but we also seize opportunities to translate our findings using human cells and
organoids. Two of our projects are testing the unorthodox hypothesis that growth-dependent translation of
mRNAs encoding limiting cell cycle regulators determines whether, and how fast, cells proliferate. We have
validated this mechanism in Drosophila and human cells, and are currently investigating how upstream
EGFR/RAS/ERK and Insulin/PI3K/mTOR signaling interface with the growth-dependent translation of factors
that promote DNA replication (e.g. E2F1, CCNE2, CDC45). A third, related project will extend our discovery that
EGFR/ERK signaling promotes mitochondrial biogenesis and a metabolic shift that activates cell growth and
proliferation, in both Drosophila and human cells. New paradigms explaining how growth is coupled to cell
division can present novel strategies and gene targets for the diagnosis, treatment, and prevention of common
diseases involving dysregulated cell proliferation. Two final projects focus on how the Drosophila intestine
senses and responds to damage. This is relevant to proliferative control because, for most epithelia, damage
initiates a regenerative response that comprises growth signaling, stem cell activation, and regulated cell
division. Epithelial damage responses also stimulate inflammation, giving further clinical relevance. To
understand this regenerative response, genomics approaches (ATAC-seq, Cut&Tag, RNA-seq) will be used to
identify the target genes of damage-dependent Cytokine/Jak/Stat signaling. In addition, we are conducting a
unique, high-throughput functional screen using enterocyte-targeted RNAi’s to identify all of the Drosophila
genes required to sense gut epithelial damage and initiate regeneration. A comprehensive catalog of the genes
used in tissue damage responses will be a foundational resource for extending our understanding of stress-
activated-, inflammatory-, and regenerative signaling. This will in turn present new approaches for: 1) controlling
inflammation during infections and in auto-immune diseases, and: 2) stimulating regeneration to combat
degenerative disease, and to aid tissue engineering.
项目概要
该 MIRA/R35 应用程序旨在取代 R01 拨款 GM126033 和 GM124434 这些项目。
解决细胞生长和增殖的调节,这是细胞和发育生物学的一个中心主题
与细胞生长失调的许多人类疾病有关(例如退行性疾病、
我们 NIGMS 支持的研究可以追溯到 1994 年,
目的是了解在动物体的复杂环境中细胞增殖是如何在体内调节的。
研究解决了基本问题:生长信号如何驱动细胞生长,细胞生长如何相关
新陈代谢调节细胞周期进程,以及环境、细胞和分子相互作用如何调节
我们主要利用果蝇体内的遗传方法,目前的重点是
肠上皮更新,但我们也抓住机会利用人类细胞转化我们的发现
我们的两个项目正在测试非正统的假设,即生长依赖性翻译。
编码限制性细胞周期调节因子的 mRNA 决定了细胞是否增殖以及增殖速度如何。
在果蝇和人类细胞中验证了这一机制,目前正在研究上游如何
EGFR/RAS/ERK 和胰岛素/PI3K/mTOR 信号传导接口与因子生长依赖性翻译
促进 DNA 复制的基因(例如 E2F1、CCNE2、CDC45)。第三个相关项目将扩展我们的发现:
EGFR/ERK 信号传导促进线粒体生物发生和代谢转变,从而激活细胞生长和
果蝇和人类细胞的增殖新范例解释了生长如何与细胞耦合。
该部门可以为常见疾病的诊断、治疗和预防提出新的策略和基因靶点
最后两个项目关注的是果蝇肠道如何参与细胞增殖失调的疾病。
这与增殖控制有关,因为对于大多数上皮细胞来说,损伤。
启动再生反应,包括生长信号传导、干细胞激活和调节细胞
上皮损伤反应也会刺激炎症,从而提供进一步的临床意义。
了解这种再生反应,基因组学方法(ATAC-seq、Cut&Tag、RNA-seq)将用于
鉴定损伤依赖性细胞因子/Jak/Stat 信号传导的靶基因此外,我们正在进行一项研究。
独特的高通量功能筛选,使用肠细胞靶向 RNAi 来识别所有果蝇
感知肠道上皮损伤并启动再生所需的基因 基因的综合目录。
用于组织损伤反应将成为扩展我们对压力的理解的基础资源
这将为以下方面提供新的方法:1) 控制。
感染期间和自身免疫性疾病中的炎症,以及:2) 刺激再生以对抗
退行性疾病,并有助于组织工程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruce Alexander Edgar其他文献
Bruce Alexander Edgar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruce Alexander Edgar', 18)}}的其他基金
Sex steroid signaling and adaptive growth of the intestine
性类固醇信号传导和肠道的适应性生长
- 批准号:
10211623 - 财政年份:2021
- 资助金额:
$ 75.26万 - 项目类别:
The Role of Ceramides in the Intestinal Stem Cell
神经酰胺在肠干细胞中的作用
- 批准号:
10380338 - 财政年份:2021
- 资助金额:
$ 75.26万 - 项目类别:
Sex steroid signaling and adaptive growth of the intestine
性类固醇信号传导和肠道的适应性生长
- 批准号:
10378067 - 财政年份:2021
- 资助金额:
$ 75.26万 - 项目类别:
Sex steroid signaling and adaptive growth of the intestine
性类固醇信号传导和肠道的适应性生长
- 批准号:
10579238 - 财政年份:2021
- 资助金额:
$ 75.26万 - 项目类别:
The Role of Ceramides in the Intestinal Stem Cell
神经酰胺在肠干细胞中的作用
- 批准号:
10623315 - 财政年份:2021
- 资助金额:
$ 75.26万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Sex, Physiological State, and Genetic Background Dependent Molecular Characterization of CircuitsGoverning Parental Behavior
控制父母行为的回路的性别、生理状态和遗传背景依赖性分子特征
- 批准号:
10661884 - 财政年份:2023
- 资助金额:
$ 75.26万 - 项目类别:
A community resource for germline and somatic genetic disease modeling in zebrafish
斑马鱼种系和体细胞遗传疾病模型的社区资源
- 批准号:
10723158 - 财政年份:2023
- 资助金额:
$ 75.26万 - 项目类别:
Resolvin receptor signaling in trigeminal sensory neurons
三叉神经感觉神经元中的 Resolvin 受体信号传导
- 批准号:
10738862 - 财政年份:2023
- 资助金额:
$ 75.26万 - 项目类别: