Advancing Chronic Condition Symptom Cluster Science Through Use of Electronic Health Records and Data Science Techniques
通过使用电子健康记录和数据科学技术推进慢性病症状群科学
基本信息
- 批准号:10394724
- 负责人:
- 金额:$ 23.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:18 year oldAcademic Medical CentersAddressAdultAdvance DirectivesAmericanAnxietyAreaAwardBehavioralBiologicalChronicChronic Obstructive Pulmonary DiseaseClinicalClinical DataClinical ManagementClinical assessmentsCluster AnalysisCodeCompetenceComplementDataData AnalysesData ScienceData SetData StoreDepressed moodDetectionDevelopmentDiagnosisDyspneaElectronic Health RecordEquipment and supply inventoriesEthnic OriginFatigueFundingFutureGeneticGenomicsGoalsHealth Care CostsHealth PromotionHealthcare SystemsHeart failureImpaired cognitionInformaticsInterventionKnowledgeKnowledge acquisitionLaboratoriesLeadLifeLiteratureMachine LearningMalignant NeoplasmsMastectomyMedical GeneticsMedical centerMentorshipModelingNatural Language ProcessingNauseaNausea and VomitingNeurobehavioral ManifestationsNon-Insulin-Dependent Diabetes MellitusOncologyPainPathologicPatientsPharmaceutical PreparationsPhasePostoperative Nausea and VomitingProceduresProteomicsPruritusPublic HealthQuality of lifeRaceReproducibilityResearchResearch PersonnelResourcesRisk FactorsScienceScientistSigns and SymptomsSleep disturbancesStrategic PlanningStructureSymptomsTechniquesTimeTrainingUnited States National Institutes of HealthUniversitiesValidationWomanWorkXerostomiabasebiomarker discoverybiomedical informaticscareercareer developmentclinical data warehouseclinical practiceclinical predictorsclinical translationclinically relevantcohortcomputerized data processingdata analysis pipelinedata miningdata visualizationdata warehouseelectronic dataexperiencehealth care service utilizationhealth datainnovationknowledge translationmalignant breast neoplasmpatient orientedpre-doctoralprocess optimizationprogramssociodemographicsstatisticssymptom clustersymptom managementsymptom sciencesymptomatic improvementunsupervised learning
项目摘要
Despite their adverse impact on patient quality of life and healthcare utilization and costs, symptom clusters
(SCs) in common adult chronic conditions such as cancer, heart failure (HF), type 2 diabetes mellitus (T2DM),
and chronic obstructive pulmonary disease (COPD) are understudied and poorly understood. The lack of
access to real world, longitudinal patient symptom data sets and inability to adequately model the complexity of
SCs has greatly limited research. Based on our previous work, we propose that these gaps can be addressed
in an innovative way using electronic health records (EHRs) and data science techniques. Our overall objective
is to develop, apply and refine, and implement an optimized data processing and analysis pipeline for the
characterization of SCs in common adult chronic conditions for use with EHR data. We hypothesize that a core
set of SCs is shared among all common adult chronic conditions and that distinct SCs characterize specific
conditions and/or treatments. The long term training goal of this project is to assist Dr. Koleck in becoming an
independent investigator conducting a program of research dedicated to mitigating symptom burden in patients
with chronic conditions through use of informatics and omics (e.g., genomics and proteomics), the focus of her
pre-doctoral work. Using exceptional resources available from Columbia University, the K99 phase of this
project will focus on the development of a rigorous pipeline; essential competencies in SC analysis and
interpretation; and the data science techniques of clinical data mining, natural language processing, machine
learning, and data visualization. In the R00 phase, Dr. Koleck will independently implement the pipeline in
another medical center to determine the reproducibility of identified SCs and begin to explore clinical predictors
(e.g., socio-demographics, laboratory results, and medications) of SCs. The specific aims are to 1) develop a
data-driven pipeline for the characterization of SCs from EHRs using a cohort of adult patients diagnosed with
cancer, as SCs have been most systematically characterized in this condition; 2) apply the pipeline to three
other common adult chronic conditions that share biological and behavioral risk factors with cancer, i.e., HF,
T2DM, and COPD, and evaluate SCs in these conditions; and 3) determine if SCs differ for cancer, HF, T2DM,
and COPD when implementing the pipeline within another medical center and explore clinically relevant, EHR-
documented predictors of identified SCs. To accomplish research aims and training goals, an interdisciplinary
team of scientists with expertise in symptom science, biomedical informatics, data science, pertinent clinical
domains, and career development mentorship has been assembled. This research is significant because a
pipeline that accommodates the format in which symptom data is already being documented in EHRs has the
potential to greatly accelerate the acquisition of SC knowledge and expedite clinical translation of symptom
mitigation strategies. Given the array of new competencies to be developed, this K99/R00 award is necessary
for achieving the candidate’s career goal of advancing chronic condition symptom science.
尽管它们对患者的生活质量以及医疗保健利用和成本产生不利影响,但症状群
(SC) 常见成人慢性疾病,如癌症、心力衰竭 (HF)、2 型糖尿病 (T2DM)、
和慢性阻塞性肺疾病(COPD)尚未得到充分研究和了解。
无法访问真实世界的纵向患者症状数据集,并且无法充分建模其复杂性
根据我们之前的工作,SC 的研究非常有限,我们建议可以解决这些差距。
我们的总体目标是利用电子健康记录 (EHR) 和数据科学技术以创新的方式。
是开发、应用、完善和实施优化的数据处理和分析管道
常见成人慢性病中 SC 的表征,用于与 EHR 数据一起使用。
所有常见成人慢性病共有一组 SC,并且不同的 SC 具有特定的特征
该项目的长期培训目标是帮助 Koleck 博士成为一名医生。
独立调查员进行一项致力于减轻患者症状负担的研究计划
通过使用信息学和组学(例如基因组学和蛋白质组学)来治疗慢性病,这是她的重点
博士前工作利用哥伦比亚大学提供的优质资源,完成了该项目的 K99 阶段。
项目将重点发展严格的管道分析和能力;
解释;以及临床数据挖掘、自然语言处理、机器的数据科学技术
在R00阶段,Koleck博士将独立实现管道。
另一个医疗中心确定已识别 SC 的可重复性并开始探索临床预测因子
SC 的具体目标(例如,社会人口统计、实验室结果和药物)。
数据驱动的管道,使用一组诊断为患有以下疾病的成年患者来表征 EHR 中的 SC
癌症,因为 SC 在这种情况下得到了最系统的表征 2) 将管道应用于三种;
其他常见的成人慢性病与癌症具有相同的生物学和行为风险因素,即心力衰竭、
T2DM 和 COPD,并评估这些情况下的 SC;以及 3) 确定 SC 在癌症、心衰、T2DM 方面是否存在差异;
和 COPD 在另一个医疗中心实施管道时,并探索临床相关的、EHR-
为了实现研究目标和培训目标,需要记录已识别的 SC 的预测因素。
拥有症状科学、生物医学信息学、数据科学、相关临床专业知识的科学家团队
这项研究意义重大,因为
适应 EHR 中已记录症状数据的格式的管道具有
极大加速 SC 知识获取并加快症状临床转化的潜力
考虑到需要开发的一系列新能力,K99/R00 奖项是必要的。
以实现候选人推进慢性病症状科学的职业目标。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identifying Symptom Information in Clinical Notes Using Natural Language Processing.
使用自然语言处理识别临床记录中的症状信息。
- DOI:
- 发表时间:2021-05-01
- 期刊:
- 影响因子:2.5
- 作者:Koleck, Theresa A;Tatonetti, Nicholas P;Bakken, Suzanne;Mitha, Shazia;Henderson, Morgan M;George, Maureen;Miaskowski, Christine;Smaldone, Arlene;Topaz, Maxim
- 通讯作者:Topaz, Maxim
Association Between Health Literacy and Medication Adherence Among Hispanics with Hypertension.
西班牙裔高血压患者健康素养与药物依从性之间的关系。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Lor, Maichou;Koleck, Theresa A;Bakken, Suzanne;Yoon, Sunmoo;Dunn Navarra, Ann
- 通讯作者:Dunn Navarra, Ann
Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review.
电子健康记录自由文本叙述中记录的症状的自然语言处理:系统评价。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Koleck, Theresa A;Dreisbach, Caitlin;Bourne, Philip E;Bakken, Suzanne
- 通讯作者:Bakken, Suzanne
The State of Data Science in Genomic Nursing.
基因组护理数据科学的现状。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Dreisbach, Caitlin;Koleck, Theresa A
- 通讯作者:Koleck, Theresa A
Response to Mental Health of Cardiac Procedure Patients Should Be a Priority for All Healthcare Providers.
对心脏手术患者心理健康的反应应该是所有医疗保健提供者的首要任务。
- DOI:
- 发表时间:2023-03-01
- 期刊:
- 影响因子:0
- 作者:Koleck, Theresa A;Mitha, Shazia;Biviano, Angelo;Caceres, Billy A;Corwin, Elizabeth J;Goldenthal, Isaac;Creber, Ruth Masterson;Turchioe, Megan Reading;Hickey, Kathleen T;Bakken, Suzanne
- 通讯作者:Bakken, Suzanne
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Theresa Ann Koleck其他文献
Theresa Ann Koleck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Theresa Ann Koleck', 18)}}的其他基金
Advancing Chronic Condition Symptom Cluster Science Through Use of Electronic Health Records and Data Science Techniques
通过使用电子健康记录和数据科学技术推进慢性病症状群科学
- 批准号:
10171921 - 财政年份:2018
- 资助金额:
$ 23.21万 - 项目类别:
Advancing Chronic Condition Symptom Cluster Science Through Use of Electronic Health Records and Data Science Techniques
通过使用电子健康记录和数据科学技术推进慢性病症状群科学
- 批准号:
10118580 - 财政年份:2018
- 资助金额:
$ 23.21万 - 项目类别:
Cognitive Function and Breast Cancer: Genomics and Disease Characteristics
认知功能与乳腺癌:基因组学和疾病特征
- 批准号:
8589850 - 财政年份:2013
- 资助金额:
$ 23.21万 - 项目类别:
Cognitive Function and Breast Cancer: Genomics and Disease Characteristics
认知功能与乳腺癌:基因组学和疾病特征
- 批准号:
8975551 - 财政年份:2013
- 资助金额:
$ 23.21万 - 项目类别:
相似海外基金
Expectations and Outcomes of Healthcare Transition in Adolescents and Young Adults with Cystic Fibrosis
囊性纤维化青少年和年轻人医疗保健转型的期望和结果
- 批准号:
10442407 - 财政年份:2021
- 资助金额:
$ 23.21万 - 项目类别:
Expectations and Outcomes of Healthcare Transition in Adolescents and Young Adults with Cystic Fibrosis
囊性纤维化青少年和年轻人医疗保健转型的期望和结果
- 批准号:
10313440 - 财政年份:2021
- 资助金额:
$ 23.21万 - 项目类别:
Expectations and Outcomes of Healthcare Transition in Adolescents and Young Adults with Cystic Fibrosis
囊性纤维化青少年和年轻人医疗保健转型的期望和结果
- 批准号:
10442407 - 财政年份:2021
- 资助金额:
$ 23.21万 - 项目类别:
A SMART Design to Improve Sleep Disturbance in Adolescents with Neurodevelopmental Disorders
改善神经发育障碍青少年睡眠障碍的智能设计
- 批准号:
10087970 - 财政年份:2019
- 资助金额:
$ 23.21万 - 项目类别:
Advancing Chronic Condition Symptom Cluster Science Through Use of Electronic Health Records and Data Science Techniques
通过使用电子健康记录和数据科学技术推进慢性病症状群科学
- 批准号:
10171921 - 财政年份:2018
- 资助金额:
$ 23.21万 - 项目类别: