Virtual Biopsy with Tissue-level Accuracy in Glioma
神经胶质瘤中具有组织水平精度的虚拟活检
基本信息
- 批准号:10393035
- 负责人:
- 金额:$ 59.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-15 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:19qAlgorithmsApplications GrantsArtificial IntelligenceAutomationBiologyBiomedical EngineeringBiopsyBrainBrain NeoplasmsClassificationClinicalComputerized Medical RecordCraniotomyDataData SetDatabasesDigital Imaging and Communications in MedicineExcisionGliomaGoalsHumanHyperacusisImageInstitutionKnowledgeMGMT geneMagnetic Resonance ImagingManualsMedical centerMethodsMethylationMolecularMolecular AnalysisMorphologic artifactsMotionNeurosurgical ProceduresNoiseOperative Surgical ProceduresPatient CarePatient-Focused OutcomesPatientsPerformancePredictive ValueProceduresProcessPrognosisProspective cohortReportingResearch Project GrantsResourcesRiskSample SizeSensitivity and SpecificityT2 weighted imagingTestingThe Cancer Genome AtlasThe Cancer Imaging ArchiveTimeTissue SampleTissuesTrainingTumor TissueUnited States National Institutes of HealthValidationWorkbaseclinical decision-makingclinical implementationclinical translationcontrast imagingcostdeep learningdeep learning algorithmexperienceimprovedlarge datasetslearning classifierlearning strategymolecular markermotion sensitivitymutational statusnovelprospectiveresponsesurgical risktooltumorvirtual biopsy
项目摘要
Project Summary
This is a Bioengineering Research Grant (BRG) proposal in response to PAR-19-158 to further develop and
validate a non-invasive panel of the most critical glioma molecular markers (IDH, 1p/19q, MGMT) using standard
clinical MRI T2-weighted images and deep learning, and extend the performance to tissue-level accuracies.
Currently, the only reliable way of obtaining molecular marker status is through direct tissue sampling of the
tumor, requiring either a craniotomy and stereotactic biopsy or a large open surgical resection. Noninvasive
determination of molecular markers with tissue-level accuracy would be transformational in the management of
gliomas, reducing or eliminating the risks and costs associated with a neurosurgical procedure, accelerating the
time to definitive treatment, improving patient experience and ultimately patient outcomes and survival time.
Artificial intelligence such as deep learning has emerged as a powerful method for classification of imaging data
that can exceed human performance. Preliminary work using our novel voxel-wise classification-segmentation
approach with the NIH/NCI TCIA glioma database has outperformed any prior noninvasive methods for
determination of IDH, 1p/19q, and MGMT methylation, achieving accuracies of 97%, 93%, and 95%,
respectively. The approach however, needs to be validated beyond the TCIA and accuracies need to be
extended in order to achieve tissue level performance. This will be accomplished by using our top-performing
voxel-wise classification framework, leveraging marker-specific targeted sample sizes, and gaining a final boost
from deep-learning artifact correction networks.
In Aim 1 we will curate a database of over 2000 gliomas including 500 subjects from our institution, 1200 subjects
from our external collaborators, and over 300 subjects from the TCIA. We will train our voxel-wise deep learning
classifiers to determine molecular status based on clinical T2-weighted MR images with target accuracies of
97%. In Aim 2 we will rigorously evaluate the motion and noise sensitivity of the networks and create an artifact
correction network with the goals of 1) recovering accuracies in the setting of large amounts of motion/noise and
2) further boosting accuracy to tissue-level performance even in the absence of visible artifact. In Aim 3 we will
deploy a complete end-to-end clinical workflow and evaluate real-world live performance of the AI tool on 300
prospectively acquired brain tumor cases and 300 subjects from our external collaborators. The AI tool will be
made available for deployment at other medical centers. The developed framework can also be extended to
additional markers in a straightforward fashion. In summary, this BRG proposal will further develop, refine and
validate a non-invasive MRI-based method for determining the most critical glioma molecular markers rivaling
tissue-level accuracies to significantly reduce and in many cases eliminate the need for stereotactic biopsy.
项目概要
这是响应 PAR-19-158 的生物工程研究补助金 (BRG) 提案,旨在进一步开发和
使用标准验证最关键的神经胶质瘤分子标记(IDH、1p/19q、MGMT)的非侵入性面板
临床 MRI T2 加权图像和深度学习,并将性能扩展到组织级精度。
目前,获得分子标记状态的唯一可靠方法是通过直接组织取样
肿瘤,需要开颅手术和立体定向活检或大的开放手术切除。无创
以组织水平准确度确定分子标记将给疾病管理带来变革
神经胶质瘤,减少或消除与神经外科手术相关的风险和成本,加速
确定治疗的时间,改善患者体验,最终改善患者的治疗结果和生存时间。
深度学习等人工智能已成为图像数据分类的强大方法
可以超越人类的表现。使用我们新颖的体素分类分割的初步工作
NIH/NCI TCIA 神经胶质瘤数据库的方法优于任何先前的非侵入性方法
测定 IDH、1p/19q 和 MGMT 甲基化,准确度达到 97%、93% 和 95%,
分别。然而,该方法需要在 TCIA 之外进行验证,并且需要提高准确性
扩展以达到组织水平的性能。这将通过使用我们性能最佳的
体素分类框架,利用特定于标记的目标样本量,并获得最终的提升
来自深度学习伪影校正网络。
在目标 1 中,我们将建立一个包含 2000 多个神经胶质瘤的数据库,其中包括我们机构的 500 名受试者、1200 名受试者
来自我们的外部合作者以及来自 TCIA 的 300 多个受试者。我们将训练我们的体素深度学习
分类器根据临床 T2 加权 MR 图像确定分子状态,目标精度为
97%。在目标 2 中,我们将严格评估网络的运动和噪声敏感性并创建一个工件
校正网络,其目标是 1)恢复大量运动/噪声设置中的精度和
2)即使在没有可见伪影的情况下,也能进一步提高组织水平性能的准确性。在目标 3 中,我们将
部署完整的端到端临床工作流程并评估 AI 工具在 300 上的实际实时性能
从我们的外部合作者处前瞻性获得脑肿瘤病例和 300 名受试者。人工智能工具将是
可供部署在其他医疗中心。所开发的框架还可以扩展到
以简单的方式添加额外的标记。综上所述,本次BRG提案将进一步发展、完善和完善。
验证一种基于 MRI 的非侵入性方法,用于确定最关键的神经胶质瘤分子标记物
组织水平的准确性可显着减少甚至在许多情况下消除立体定向活检的需要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph A Maldjian其他文献
Joseph A Maldjian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph A Maldjian', 18)}}的其他基金
Virtual Biopsy with Tissue-level Accuracy in Glioma
神经胶质瘤中具有组织水平精度的虚拟活检
- 批准号:
10226632 - 财政年份:2021
- 资助金额:
$ 59.55万 - 项目类别:
Virtual Biopsy with Tissue-level Accuracy in Glioma
神经胶质瘤中具有组织水平精度的虚拟活检
- 批准号:
10596130 - 财政年份:2021
- 资助金额:
$ 59.55万 - 项目类别:
iTAKL:Imaging Telemetry And Kinematic modeLing in youth football-High School
iTAKL:青少年足球中的成像遥测和运动学模型-高中
- 批准号:
9981037 - 财政年份:2016
- 资助金额:
$ 59.55万 - 项目类别:
Sports Related Subconcussive Impacts in Children: MRI & Biomechanical Correlates
儿童运动相关的亚脑震荡影响:MRI
- 批准号:
8845636 - 财政年份:2014
- 资助金额:
$ 59.55万 - 项目类别:
Sports Related Subconcussive Impacts in Children: MRI & Biomechanical Correlates
儿童运动相关的亚脑震荡影响:MRI
- 批准号:
8748697 - 财政年份:2014
- 资助金额:
$ 59.55万 - 项目类别:
Uncovering Brain Anatomy/Function/Relationships using Biologic Parametric Mapping
使用生物参数映射揭示大脑解剖结构/功能/关系
- 批准号:
7020238 - 财政年份:2004
- 资助金额:
$ 59.55万 - 项目类别:
Cerberal Diffusion and Perfusion Correlation using Biologic Parametric Mapping
使用生物参数映射的脑扩散和灌注相关性
- 批准号:
7020486 - 财政年份:2004
- 资助金额:
$ 59.55万 - 项目类别:
相似国自然基金
随机阻尼波动方程的高效保结构算法研究
- 批准号:12301518
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大规模黎曼流形稀疏优化算法及应用
- 批准号:12371306
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于任意精度计算架构的量子信息处理算法硬件加速技术研究
- 批准号:62304037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于物理信息神经网络的雷达回波资料反演蒸发波导算法研究
- 批准号:42305048
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Deep-Learning-Augmented Quantitative Gradient Recalled Echo (DLA-qGRE) MRI for in vivo Clinical Evaluation of Brain Microstructural Neurodegeneration in Alzheimer Disease
深度学习增强定量梯度回忆回波 (DLA-qGRE) MRI 用于阿尔茨海默病脑微结构神经变性的体内临床评估
- 批准号:
10659833 - 财政年份:2023
- 资助金额:
$ 59.55万 - 项目类别:
Noninvasive Repositioning of Kidney Stone Fragments with Acoustic Forceps
用声学钳无创重新定位肾结石碎片
- 批准号:
10589666 - 财政年份:2023
- 资助金额:
$ 59.55万 - 项目类别:
Leveraging Molecular Technologies to Improve Diagnosis and Management of Pediatric Acute Respiratory Illness in Resource-Constrained Settings
利用分子技术改善资源有限环境中儿科急性呼吸系统疾病的诊断和管理
- 批准号:
10739603 - 财政年份:2023
- 资助金额:
$ 59.55万 - 项目类别:
Design and Pilot Test of A Prediabetes Digital Patient Activation Tool
糖尿病前期数字患者激活工具的设计和试点测试
- 批准号:
10648646 - 财政年份:2023
- 资助金额:
$ 59.55万 - 项目类别:
Steerable Laser Interstitial Thermotherapy (SLIT) Robot for Brain Tumor Therapy
用于脑肿瘤治疗的可操纵激光间质热疗 (SLIT) 机器人
- 批准号:
10572533 - 财政年份:2023
- 资助金额:
$ 59.55万 - 项目类别: