Pseudo-hypoxic contributions to the tumor microenvironment in kidney cancer
假性缺氧对肾癌肿瘤微环境的贡献
基本信息
- 批准号:10386509
- 负责人:
- 金额:$ 3.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAffectAntigen-Antibody ComplexAntitumor ResponseAreaCD8B1 geneCancer BiologyCell EnergeticsCell HypoxiaCell LineCell NucleusCell physiologyCellsCellular Metabolic ProcessCharacteristicsClear cell renal cell carcinomaComplementComplexConsumptionDataDefectDependenceDevelopmentDisease ManagementEnvironmentEventFine needle aspiration biopsyGenesGeneticGlucoseGrowthHomeostasisHumanHypoxiaImmuneImmune EvasionImmunologic SurveillanceImmunooncologyImmunotherapyImpairmentInflammatoryInvestigationKnock-outLearningLinkLymphocyte SuppressionMalignant NeoplasmsMediatingMetabolicMetabolismModalityModelingMusMutationMyelogenousMyeloid-derived suppressor cellsNutrientOrganoidsOxygenPathogenesisPathway interactionsPatient-Focused OutcomesPatientsPhenotypePopulationPopulation HeterogeneityRenal carcinomaResistanceRoleShapesSignal PathwaySignal TransductionT-LymphocyteTestingTimeTumor ImmunityTumor-Infiltrating LymphocytesTumor-associated macrophagesTumor-infiltrating immune cellsUbiquitinationVHL geneVHL proteinWorkaerobic glycolysisanti-tumor immune responsebasecancer cellfunctional disabilityimmune checkpoint blockadeimmune functionimprovedin vivoin vivo Modelmitochondrial metabolismnormoxianovelrecruitresponsesingle cell analysistherapy resistanttooltranscription factortranscriptometranscriptome sequencingtranslational studytumortumor metabolismtumor microenvironmenttumor progression
项目摘要
ABSTRACT
Clear cell renal cell carcinoma (ccRCC), the most common type of kidney cancer, is characterized by deregulated
hypoxic signaling, metabolic defects, and complex immune cell infiltrate in the tumor microenvironment (TME).
Loss of the oxygen sensing gene, von Hippel Lindau (VHL), is a critical early event in ccRCC pathogenesis and
promotes stabilization of hypoxia inducible (transcription) factors (HIF) that upregulate pro-growth signaling
pathways, including aerobic glycolysis, regardless of oxygen availability. This phenomenon is termed “pseudo-
hypoxia.” The most frequent immune types affecting ccRCC are functionally impaired CD8 tumor infiltrating
lymphocytes (CD8 TIL) and metabolically enhanced tumor associated macrophages (TAM). Advancements in
immune oncology have led to improved overall patient outcomes with immune checkpoint blockade (ICB)
therapy; however, current modalities do not result in durable responses for the majority of ccRCC patients. I
propose that features linked to pseudo-hypoxic signaling promote alterations in cancer cell energetic
requirements that impact immune cell function in the TME and revealing these aspects may provide new
opportunities for therapy. My preliminary data indicate that Vhl loss favors a mature TAM myeloid phenotype
with enhanced mitochondrial metabolism in murine RCC, and this result is consistent with enhanced metabolism
observed in the myeloid compartment of human ccRCC. Additionally, TAM suppression of CD8 TIL may be
enhanced by specific interactions with cancer cells, though exact TAM functions are not understood. In this
proposal, I will test the hypothesis that pseudo-hypoxic signals from cancer cells in the TME
preferentially support a metabolically active TAM subset that promotes CD8 TIL suppression and that
inhibiting TAM activity will enhance the CD8 TIL response to ICB therapy. To test the cancer cell pseudo-
hypoxic effect on TAM function I have developed a fine needle aspiration-based patient-derived organoid (FNA-
PDO) model that recapitulates key factors of the TME in human tumors. I will also employ a pair of murine
syngeneic Renca cell line models (Vhl WT and Vhl KO) to address the impact of pseudo-hypoxia on the TME in
vivo. I will: (1) Test if pseudo-hypoxia supports a unique TAM phenotype with distinct metabolism; and (2), Test
the role of TAM in T cell suppression and ICB response. Ultimately, these studies will advance our current
understanding of kidney cancer biology by demonstrating mechanisms that shape the TME and highlighting new
strategies to improve immunotherapy.
抽象的
透明细胞肾细胞癌 (ccRCC) 是最常见的肾癌类型,其特点是失调
肿瘤微环境(TME)中缺氧信号、代谢缺陷和复杂的免疫细胞浸润。
氧传感基因 von Hippel Lindau (VHL) 的缺失是 ccRCC 发病机制中的一个关键早期事件,
促进缺氧诱导(转录)因子 (HIF) 的稳定,从而上调促生长信号
途径,包括有氧糖酵解,无论氧气供应情况如何,这种现象被称为“伪-糖酵解”。
缺氧。影响 ccRCC 的最常见的免疫类型是功能受损的 CD8 肿瘤浸润。
淋巴细胞(CD8 TIL)和代谢增强的肿瘤相关巨噬细胞(TAM)的进展。
免疫肿瘤学通过免疫检查点阻断 (ICB) 改善了患者的总体预后
治疗;然而,目前的治疗方法并未对大多数 ccRCC 患者产生持久的缓解。
提出与假性缺氧信号相关的特征促进癌细胞能量的改变
影响 TME 中免疫细胞功能的要求并揭示这些方面可能会提供新的
我的初步数据表明,Vhl 缺失有利于成熟的 TAM 骨髓表型。
小鼠肾细胞癌中线粒体代谢增强,这一结果与代谢增强一致
另外,在人 ccRCC 的骨髓室中观察到,TAM 对 CD8 TIL 的抑制可能是这样的。
通过与癌细胞的特定相互作用而增强,尽管具体的 TAM 功能尚不清楚。
提议,我将检验以下假设:TME 中癌细胞发出假性缺氧信号
优先支持代谢活跃的 TAM 子集,促进 CD8 TIL 抑制,并且
抑制TAM活性将增强CD8 TIL对ICB治疗的反应以测试癌细胞伪-。
缺氧对 TAM 功能的影响 我开发了一种基于细针抽吸的患者来源的类器官 (FNA-
PDO)模型概括了人类肿瘤中 TME 的关键因素,我还将使用一对小鼠。
同基因 Renca 细胞系模型(Vhl WT 和 Vhl KO),用于解决假性缺氧对 TME 的影响
我将:(1)测试假性缺氧是否支持具有不同代谢的独特 TAM 表型;以及(2)测试
TAM 在 T 细胞抑制和 ICB 反应中的作用最终,这些研究将推进我们目前的研究。
通过展示塑造 TME 的机制并强调新的机制来了解肾癌生物学
改善免疫治疗的策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melissa M Wolf其他文献
Melissa M Wolf的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Melissa M Wolf', 18)}}的其他基金
Pseudo-hypoxic contributions to the tumor microenvironment in kidney cancer
假性缺氧对肾癌肿瘤微环境的贡献
- 批准号:
10546439 - 财政年份:2022
- 资助金额:
$ 3.18万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 3.18万 - 项目类别:
A Gene-Network Discovery Approach to Structural Brain Disorders
结构性脑疾病的基因网络发现方法
- 批准号:
10734863 - 财政年份:2023
- 资助金额:
$ 3.18万 - 项目类别:
SELENOF is a Novel Tumor Suppressor and a New Target to Overcome Racial Disparity in Breast Cancer.
SELENOF 是一种新型肿瘤抑制剂,也是克服乳腺癌种族差异的新靶点。
- 批准号:
10735662 - 财政年份:2023
- 资助金额:
$ 3.18万 - 项目类别:
Novel Implementation of Microporous Annealed Particle HydroGel for Next-generation Posterior Pharyngeal Wall Augmentation
用于下一代咽后壁增强的微孔退火颗粒水凝胶的新实现
- 批准号:
10727361 - 财政年份:2023
- 资助金额:
$ 3.18万 - 项目类别:
CRISPR-Cas Editing as a Genetic Cure for Autosomal Dominant Polycystic Kidney Disease
CRISPR-Cas 编辑作为常染色体显性多囊肾病的基因治疗
- 批准号:
10822502 - 财政年份:2023
- 资助金额:
$ 3.18万 - 项目类别: