Assessment of mobile application-delivered lighting interventions for reducing circadian disruption in shift workers
评估移动应用程序提供的照明干预措施,以减少轮班工人的昼夜节律紊乱
基本信息
- 批准号:10384670
- 负责人:
- 金额:$ 25.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerometerAddressAlgorithmsAndroidAnxietyApple watchBehavior TherapyBehavioralBiologicalBiological ClocksBiological RhythmBody TemperatureCircadian DysregulationCircadian desynchronyClinical TrialsCollectionConflict (Psychology)ConsumptionDataDevelopmentDevicesExposure toFatigueFeedbackFunctional disorderGenerationsGoalsGoldGrantHealthHealth systemHomeHourImpaired cognitionIndividualInterventionInterviewKnowledgeLaboratoriesLightLight ExerciseLightingLong-Term EffectsMathematicsMelatoninMental disordersMethodsModelingMoodsOutputPerformancePersonsPhasePlacebosPopulationPositioning AttributeProcessQuality of lifeRandomized Clinical TrialsRecommendationReportingRiskSalesScheduleSignal TransductionSleepSmall Business Technology Transfer ResearchSocietiesSystemTechniquesTestingTimeTranslatingUpdateWorkWorkplacebasecancer riskcardiometabolismcircadiancircadian pacemakercomparison interventionconsumer productcostdesigndosageexperienceglobal healthhealth dataimprovedmathematical modelmobile applicationnovelpersonalized interventionrecruitrectalresponsesalivary assayshift worksimulationsmartphone based assessmentstandard measuretechnological innovationtoolusabilitywearable device
项目摘要
PROJECT SUMMARY
Shift workers experience profound circadian disruption, which can have deleterious long term effects on their
health and quality of life. Mood, fatigue, and performance can be improved in shift workers by moving the
timing of their peak circadian drive to sleep outside the hours they are expected to work. This can be achieved
with a targeted lighting intervention, as light is the primary input to the body’s circadian clock. Crafting such an
intervention for an individual, however, requires knowledge of the person’s starting circadian state, which has
traditionally been hard to assess in shift workers. The gold standard measure of circadian timing is dim light
melatonin onset, or DLMO. For day workers, DLMO most commonly occurs in a six hour window prior to
habitual bedtime. For fixed night shift workers, however, DLMO can occur anytime over the 24-hour day. This
requires 24 hours of melatonin collection in order to arrive at a single indicator of internal time, which is often
prohibitively time consuming and expensive.
Recently, we have developed new techniques for noninvasively predicting circadian timing through
consumer wearable devices (e.g. Apple Watch). These techniques can predict DLMO timing to within 2 hours
for more than three-quarters of shift workers working night shifts. The PIs of this grant have also developed
mathematical techniques for generating lighting recommendations based on predicted circadian timing, aimed
at shifting the peak circadian drive to sleep outside the window of working hours.
In this Phase I STTR, we propose to develop an iOS mobile application for shift workers, to both track
their circadian state and to make recommendations for how they can expose themselves to light to feel better
and reduce the long term negative health impacts of shift work. We will design the app based on interviews
with shift workers in an iterative process. Twenty-five shift workers will be recruited to be in a usability trial
assessing the app. We will have them wear an Apple Watch for one week prior to the start of the usability trial
to collect baseline data, and we will collect DLMO at the conclusion of that week. For two weeks after collection
of DLMO, we will have them interact with the mobile app, including following the recommendations it makes
and documenting their compliance with the recommendations. At the conclusion of the trial, we will ask for their
feedback on the app in order to improve the algorithms and make updates to the design.
Ultimately, an app of this kind could interface with home and workplace smart lighting systems, could
inform employer scheduling decisions, and could be used to increase retention in critical shift work professions
while reducing the negative health impacts of night shifts on workers.
项目概要
轮班工人的昼夜节律受到严重干扰,这可能会对他们的身体产生长期有害影响
通过移动可以改善轮班工人的健康和生活质量。
在预计工作时间之外安排他们的昼夜节律高峰睡眠时间 这是可以实现的。
通过有针对性的照明干预,因为光是人体生物钟的主要输入。
然而,对个人的干预需要了解该人的起始昼夜节律状态,这已经
传统上很难对轮班工人进行评估,衡量昼夜节律的黄金标准是昏暗的光线。
褪黑激素发作 (DLMO) 对于日间工作人员来说,DLMO 最常发生在 6 小时之前。
然而,对于固定夜班工人来说,DLMO 可能在一天 24 小时内的任何时间发生。
需要 24 小时收集褪黑激素才能得出内部时间的单一指标,这通常是
非常耗时且昂贵。
最近,我们开发了通过非侵入性预测昼夜节律的新技术
这些技术可以在 2 小时内预测消费者可穿戴设备(例如 Apple Watch)。
对于超过四分之三的夜班工人来说,这项补助金的绩效指标也已制定。
基于预测的昼夜节律时间生成照明建议的数学技术,旨在
将昼夜节律高峰转移到工作时间之外的睡眠时间。
在第一阶段 STTR 中,我们建议为轮班工人开发一个 iOS 移动应用程序,以跟踪
他们的昼夜节律状态,并就如何让自己暴露在光线下以感觉更好提出建议
并减少轮班工作对健康的长期负面影响。我们将根据访谈设计该应用程序。
将招募 25 名轮班工人进行可用性试验。
在可用性试验开始前,我们将让他们佩戴 Apple Watch 一周来评估该应用程序。
收集基线数据,我们将在收集后两周内收集 DLMO。
DLMO 的人员,我们将让他们与移动应用程序进行交互,包括遵循其提出的建议
并记录他们对建议的遵守情况。在试验结束时,我们将询问他们的情况。
对应用程序的反馈,以改进算法并更新设计。
最终,此类应用程序可以与家庭和工作场所智能照明系统交互,可以
为雇主的调度决策提供信息,并可用于提高关键轮班工作职业的保留率
同时减少夜班对工人健康的负面影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip Cheng其他文献
Philip Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip Cheng', 18)}}的其他基金
Sleep reactivity as a novel mechanism in Shift Work Disorder
睡眠反应性是轮班工作障碍的一种新机制
- 批准号:
10530756 - 财政年份:2022
- 资助金额:
$ 25.49万 - 项目类别:
Sleep reactivity as a novel mechanism in Shift Work Disorder
睡眠反应性是轮班工作障碍的一种新机制
- 批准号:
10704676 - 财政年份:2022
- 资助金额:
$ 25.49万 - 项目类别:
Enhancing digital CBT-I to improve adherence and reduce disparities
增强数字 CBT-I 以提高依从性并减少差异
- 批准号:
10491349 - 财政年份:2021
- 资助金额:
$ 25.49万 - 项目类别:
Enhancing digital CBT-I to improve adherence and reduce disparities
增强数字 CBT-I 以提高依从性并减少差异
- 批准号:
10686072 - 财政年份:2021
- 资助金额:
$ 25.49万 - 项目类别:
Enhancing digital CBT-I to improve adherence and reduce disparities
增强数字 CBT-I 以提高依从性并减少差异
- 批准号:
10279108 - 财政年份:2021
- 资助金额:
$ 25.49万 - 项目类别:
Clinical translation of phenotypes of shift work disorder
轮班工作障碍表型的临床转化
- 批准号:
10208934 - 财政年份:2017
- 资助金额:
$ 25.49万 - 项目类别:
Clinical translation of phenotypes of shift work disorder
轮班工作障碍表型的临床转化
- 批准号:
10208934 - 财政年份:2017
- 资助金额:
$ 25.49万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Ultra Wideband Fall Detection and Prediction Solution for People Living with Dementia
针对痴呆症患者的超宽带跌倒检测和预测解决方案
- 批准号:
10760690 - 财政年份:2023
- 资助金额:
$ 25.49万 - 项目类别:
Wearable elastography for ambulatory monitoring of tissue mechanics
用于组织力学动态监测的可穿戴弹性成像
- 批准号:
10726529 - 财政年份:2023
- 资助金额:
$ 25.49万 - 项目类别:
Development of the OpiAID strength band platform
OpiAID 力量带平台的开发
- 批准号:
10684399 - 财政年份:2023
- 资助金额:
$ 25.49万 - 项目类别:
Training of machine learning algorithms for the classification of accelerometer-measured bednet use and related behaviors associated with malaria risk
训练机器学习算法,用于对加速计测量的蚊帐使用和与疟疾风险相关的相关行为进行分类
- 批准号:
10727374 - 财政年份:2023
- 资助金额:
$ 25.49万 - 项目类别:
Development of an all-in-one soft wearable device for accurate lung function detection and asthma diagnosis
开发一款用于精确肺功能检测和哮喘诊断的一体式软可穿戴设备
- 批准号:
10726175 - 财政年份:2023
- 资助金额:
$ 25.49万 - 项目类别: