Preclinical testing of a 3D printed external scaffold device to prevent vein graft failure after coronary bypass graft surgery
3D 打印外部支架装置预防冠状动脉搭桥手术后静脉移植失败的临床前测试
基本信息
- 批准号:10385132
- 负责人:
- 金额:$ 34.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2024-09-14
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressAnimal ModelAnimal TestingAnimalsBilateralBiocompatible MaterialsBiomedical EngineeringCaliberCardiacChronicClinicalClinical ResearchCollaborationsContralateralCoronary ArteriosclerosisCoronary Artery BypassCoronary CirculationCoronary VesselsDataData AnalysesData SetDevelopmentDevice DesignsDevicesDiffuseDiseaseDoctor of MedicineDoctor of PhilosophyEngineeringFailureFollow-Up StudiesFoundationsFundingGenerationsGoalsGoldHarvestHeartHistopathologyHumanImmunohistochemistryImplantIn VitroInternationalInvestmentsLeadMechanicsMedical DeviceMedical Device DesignsMethodsModelingMorbidity - disease rateOperative Surgical ProceduresOutcomePatientsPerformancePharmacologyPhasePositioning AttributePostoperative PeriodPreclinical TestingPreventionPrintingProceduresRegulatory PathwayResearchResearch PersonnelSafetySaphenous VeinSecureSheepSmall Business Technology Transfer ResearchStenosisStimulusStressSurgeonSurgical ManagementTechniquesTestingTimeTissuesVariantVein graftbasebiodegradable scaffoldclinical practicecommercializationdesignelastomericfirst-in-humanfollow-upgraft failurehemodynamicshuman studyimmunogenicimprovedin vivoin vivo evaluationmechanical loadmechanical stimulusmortalitymultimodal datanext generationnovelpre-clinicalpreclinical studypreservationpressurepreventprofessorprototyperesponsescaffoldsheep modelstandard caresuccess
项目摘要
Saphenous vein graft (SVG) failure following coronary artery bypass grafting (CABG) is a critical clinical problem,
with recent studies revealing that as many as 25% of vein grafts develop stenosis within 12-18 months after
surgery, and up to 50% of grafts occlude within 5-10 years. CABG surgery is the gold standard treatment for
patients with severe multi-vessel disease, with over 370,000 procedures performed annually in the U.S. and
SVGs are used in 95% of cases. Identification of strategies and devices to prevent SVG failure represents a
pressing unmet clinical need. BioGraft will address this unmet need by developing an external biodegradable
scaffold device to prevent SVG failure. It is well established that mechanical loading contributes to the cellular
and structural changes leading to SVG failure. In current clinical practice, when the SVG is harvested and
implanted into the coronary circulation, it is subjected to an abrupt change in mechanical loading (20X change
in pressure, 4X change in flow-induced shear), triggering SVG wall remodeling and, often, maladaptation and
failure. Our foundational R01-funded research, which laid the scientific foundation for the founding of BioGraft,
showed that gradual increases in loading could mitigate or even eliminate graft failure. We demonstrated this
concept in vivo, showing more favorable graft adaptation with a first-generation design in an ovine model. Here,
to achieve a design that can be manufactured at scale, we propose a next-generation 3D printed biodegradable
scaffold, which we will refine and test in this proposal. To achieve our goals, we propose three specific aims. In
Aim 1, we will screen 3D-printed design candidates with ex vivo testing and degradation studies. This will allow
us to efficiently and inexpensively select designs matching desired targets. In Aim 2, we will perform pre-clinical
testing of the scaffold device in an established ovine carotid-jugular interpositional vein graft model of CABG
surgery. This will establish preliminary safety and efficacy. In Aim 3, we will characterize device performance
using mechanical testing and histopathology. These data will enable follow up fundraising, development of a
commercialization plan and initiation of FDA discussions. BioGraft’s founding team leverages a long-standing
engineering and clinical collaboration and recent partnerships with renowned investigators at Stanford and Duke
who hold IP for unique bioabsorbable materials and bring expertise in rapid 3D printing manufacturing methods.
We see a potential annual $1.6B total addressable market for the proposed device.
冠状动脉旁路移植术(CABG)后的隐静脉移植(SVG)失败是一个关键的临床问题,
最近的研究表明,多达 25% 的静脉移植物在术后 12-18 个月内出现狭窄
手术,5-10 年内高达 50% 的移植物闭塞,CABG 手术是治疗的金标准。
患有严重多血管疾病的患者,在美国每年进行超过 370,000 例手术
95% 的情况都使用 SVG 识别防止 SVG 故障的策略和设备。
BioGraft 将通过开发外部可生物降解的药物来解决这一未满足的需求。
防止 SVG 失效的支架装置 众所周知,机械负荷有助于细胞的生长。
在当前的临床实践中,当 SVG 被收获和使用时,结构变化会导致 SVG 失效。
植入冠状循环后,它会受到机械负荷的突然变化(20X变化
压力变化,流动引起的剪切力的 4 倍变化),引发 SVG 壁重塑,并且通常会导致适应不良和
我们由 R01 资助的基础研究为 BioGraft 的成立奠定了科学基础,
表明逐渐增加负载可以减轻甚至移植消除失败。
体内概念,在绵羊模型中显示出更有利的移植适应性与第一代设计,
为了实现可大规模制造的设计,我们提出了下一代 3D 打印可生物降解的材料
为了实现我们的目标,我们提出了三个具体目标。
目标 1,我们将通过离体测试和降解研究来筛选 3D 打印设计候选方案。
我们将高效且廉价地选择符合所需目标的设计。在目标 2 中,我们将进行临床前研究。
支架装置在已建立的羊颈动脉-颈间静脉移植冠状动脉搭桥术模型中的测试
这将确定初步的安全性和有效性。在目标 3 中,我们将表征设备的性能。
使用机械测试和组织病理学,这些数据将有助于后续筹款和开发。
BioGraft 的商业化计划和发起的创始团队利用了长期的经验。
工程和临床合作以及最近与斯坦福大学和杜克大学的才华横溢的专家的合作伙伴关系
他们拥有独特生物可吸收材料的知识产权,并带来快速 3D 打印制造方法的专业知识。
我们认为所提议的设备每年潜在的潜在市场总额为 1.6B 美元。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alison L Marsden其他文献
Benchmark problems for numerical treatment of backflow at open boundaries
开放边界回流数值处理的基准问题
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:2.1
- 作者:
C. Bertoglio;A. Caiazzo;Y. Bazilevs;M. Braack;M. Esmaily;V. Gravemeier;Alison L Marsden;O. Pironneau;Irene E Vignon;Wolfgang A Wall - 通讯作者:
Wolfgang A Wall
Alison L Marsden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alison L Marsden', 18)}}的其他基金
Computational Medicine in the Heart, Integrated Training Program
心脏计算医学综合培训计划
- 批准号:
10556918 - 财政年份:2023
- 资助金额:
$ 34.51万 - 项目类别:
SCH: INT: A Virtual Surgery Simulator to Accelerate Medical Training in Cardiovascular Disease
SCH:INT:加速心血管疾病医疗培训的虚拟手术模拟器
- 批准号:
10487534 - 财政年份:2019
- 资助金额:
$ 34.51万 - 项目类别:
Automated data curation to ensure model credibility in the Vascular Model Repository
自动数据管理以确保血管模型存储库中模型的可信度
- 批准号:
10016840 - 财政年份:2019
- 资助金额:
$ 34.51万 - 项目类别:
SCH: INT: A Virtual Surgery Simulator to Accelerate Medical Training in Cardiovascular Disease
SCH:INT:加速心血管疾病医疗培训的虚拟手术模拟器
- 批准号:
10259714 - 财政年份:2019
- 资助金额:
$ 34.51万 - 项目类别:
Automated data curation to ensure model credibility in the Vascular Model Repository
自动数据管理以确保血管模型存储库中模型的可信度
- 批准号:
10175029 - 财政年份:2019
- 资助金额:
$ 34.51万 - 项目类别:
SCH: INT: A Virtual Surgery Simulator to Accelerate Medical Training in Cardiovascular Disease
SCH:INT:加速心血管疾病医疗培训的虚拟手术模拟器
- 批准号:
10020975 - 财政年份:2019
- 资助金额:
$ 34.51万 - 项目类别:
SCH: INT: A Virtual Surgery Simulator to Accelerate Medical Training in Cardiovascular Disease
SCH:INT:加速心血管疾病医疗培训的虚拟手术模拟器
- 批准号:
10412769 - 财政年份:2019
- 资助金额:
$ 34.51万 - 项目类别:
Enabling reliable cardiovascular simulations via uncertainty quantification
通过不确定性量化实现可靠的心血管模拟
- 批准号:
9348646 - 财政年份:2016
- 资助金额:
$ 34.51万 - 项目类别:
Enabling reliable cardiovascular simulations via uncertainty quantification
通过不确定性量化实现可靠的心血管模拟
- 批准号:
9030537 - 财政年份:2016
- 资助金额:
$ 34.51万 - 项目类别:
Enabling reliable cardiovascular simulations via uncertainty quantification
通过不确定性量化实现可靠的心血管模拟
- 批准号:
9751081 - 财政年份:2016
- 资助金额:
$ 34.51万 - 项目类别:
相似国自然基金
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
- 批准号:52378167
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高面能量密度全3D打印微型锌离子混合电容器的构筑与储能机理研究
- 批准号:22309176
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
丝内/丝间空洞对3D打印连续纤维复合材料损伤机理影响机制与分析方法
- 批准号:52375150
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D打印单向流场诱导构筑多级有序电磁屏蔽结构及调控机理研究
- 批准号:52303036
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
- 批准号:
10736961 - 财政年份:2023
- 资助金额:
$ 34.51万 - 项目类别:
A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
- 批准号:
10734465 - 财政年份:2023
- 资助金额:
$ 34.51万 - 项目类别:
A novel breast cancer therapy based on secreted protein ligands from CD36+ fibroblasts
基于 CD36 成纤维细胞分泌蛋白配体的新型乳腺癌疗法
- 批准号:
10635290 - 财政年份:2023
- 资助金额:
$ 34.51万 - 项目类别:
3D Printed Microfluidic Artificial Lung for Veteran Rehabilitation
用于退伍军人康复的 3D 打印微流控人工肺
- 批准号:
10629531 - 财政年份:2023
- 资助金额:
$ 34.51万 - 项目类别:
Multi-parametric anthropomorphic MRI Phantoms technology for reliable and reproducible structural and quantitative MRI
多参数拟人 MRI Phantoms 技术可实现可靠且可重复的结构和定量 MRI
- 批准号:
10729161 - 财政年份:2023
- 资助金额:
$ 34.51万 - 项目类别: