Identifying causal genetic variants and molecular mechanisms impacting mental health
识别影响心理健康的因果遗传变异和分子机制
基本信息
- 批准号:10380573
- 负责人:
- 金额:$ 61.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAcuteAffectAllelesAlzheimer&aposs DiseaseBiological AssayBiologyBrainBrain regionCatalogsCellsChromatinCommunitiesComputer softwareComputing MethodologiesDNA SequenceDataDetectionDevelopmentDiseaseFutureGene ExpressionGene Expression RegulationGene FrequencyGenesGeneticGenetic DiseasesGenetic LoadGenetic RiskGenetic VariationGenotype-Tissue Expression ProjectHumanIndividualInfluentialsLearningLinkLinkage DisequilibriumMachine LearningMapsMasksMental HealthMental disordersMethodsModelingMolecularMolecular DiseaseMusNational Human Genome Research InstituteNeurodevelopmental DisorderOrganoidsOutcomeParkinson DiseasePathologicPerformancePopulationQuantitative Trait LociReporterReproducibilityResearchResolutionResourcesRiskTissue SampleTissuesTrainingUncertaintyUntranslated RNAVariantWeightWorkbasebiobankbrain cellcausal variantcell typecomputational pipelinesdeep learning modeldisorder riskepigenomeepigenomicsexperimental studyfunctional genomicsgenetic variantgenome wide association studygenomic locusimprovedinsightmachine learning methodmachine learning modelnovelnovel strategiesopen datapolygenic risk scorepreventpublic health relevanceregression algorithmrisk predictionsuccesstherapy developmenttrait
项目摘要
Identifying how genetic variation leads to neurodevelopmental or psychiatric disorders provides new means to
study, predict, prevent and treat disease. Identifying the immediate molecular consequences of disease-
associated genetic variation has necessitated the development of large-scale, multi-tissue functional genomic
resources. Projects such as GTEx, Roadmap Epigenomics Project and PsychENCODE have combined
molecular QTL mapping and epigenomic maps in bulk tissues to interpret various disease-associated genetic
variants. However, few colocalizations between molecular QTLs and traits have been robustly identified and
few causal variants mapped. As tissues like the brain constitute 100s of cell-types, we hypothesize that
existing maps may mask the contributions of disease-associated variation in less-abundant cell types. One
extremely powerful approach to identify cell-type specific molecular effects and their relationship to genetic
diseases is through application of chromatin accessibility data – these data both allow inference of causal cell
types and provide base level resolution gene regulation. Our team has considerable expertise in connecting
GWAS to molecular functions and predicting causal variants through use of chromatin accessibility data. We
have additionally recently collaborated to generate a comprehensive, multi-individual map single cell ATAC-
seq map (scATAC-seq) of six different brain regions to detect causal cell types and predict causal variants.
This work has been recently demonstrated in our fine-mapping study of Alzheimer’s and Parkinson’s disease
(Corces et al, bioRxiv, 2020) but has not been systematically applied to mental health disorders. We propose
to develop statistical genetics and machine learning approaches that advance the use of scATAC-seq data to
connecting mental health GWAS loci to specific cell types, mechanisms and causal variants. In Aim 1, we will
assemble a pipeline that leverages region and cell type-specific scATAC-seq data to identify pathological cell
types for 100s of mental health and brain-related traits. We will also enhance the detection of cell-type specific
molecular mechanisms by extending and applying a novel GWAS/QTL colocalization approach. Throughout
these activities, variants will be validated using massively-parallel reporter assays (MPRA). In Aim 2, we will
develop sophisticated machine learning models that learn regulatory grammars and score variants across the
allele frequency spectrum. Predicted causal variants in GWAS loci will be further assessed with MPRAs in Aim
1 and applied in Aim 3. In Aim 3, we will demonstrate how improved detection of causal variants using our
single-cell informed models aids transferability of polygenic risk scores across populations.
We will provide open resources and reproducible computational methods and pipelines that integrate
single cell chromatin accessibility data from multiple brain regions. This will allow detection cell-type specific
genetic effects and pathological cell types in mental health GWAS, establish robust causal links between
variants, genes and disease, and improve prediction of disease risk.
确定遗传变异如何导致神经发育或精神疾病提供了新的方法
研究、预测、预防和治疗疾病。
相关的遗传变异使得大规模、多组织功能基因组的开发成为必要
GTEx、Roadmap Epigenomics Project 和 PsychENCODE 等项目已合并。
大量组织中的分子 QTL 定位和表观基因组图谱可解释各种疾病相关遗传
然而,分子 QTL 和性状之间的共定位很少被可靠地鉴定和确定。
由于大脑等组织由数百种细胞类型组成,因此我们很难确定因果变异。
现有的图谱可能掩盖了数量较少的细胞类型中与疾病相关的变异的贡献。
识别细胞类型特异性分子效应及其与遗传关系的极其强大的方法
疾病是通过染色质可及性数据的应用——这些数据都允许推断因果细胞
类型并提供基础水平分辨率基因调控,我们的团队在连接方面拥有丰富的专业知识。
通过使用染色质可及性数据对分子功能进行 GWAS 并预测因果变异。
最近还合作生成了一个全面的、多个体的单细胞 ATAC-图谱
六个不同大脑区域的 seq 图谱 (scATAC-seq),用于检测因果细胞类型并预测因果变异。
这项工作最近已在我们对阿尔茨海默病和帕金森病的精细绘图研究中得到证实
(Corces 等人,bioRxiv,2020)但我们建议尚未系统地应用于精神健康障碍。
开发统计遗传学和机器学习方法,推进 scATAC-seq 数据的使用
将心理健康 GWAS 位点与特定细胞类型、机制和因果变异联系起来 在目标 1 中,我们将。
组装一个管道,利用区域和细胞类型特定的 scATAC-seq 数据来识别病理细胞
我们还将加强对细胞类型特异性的检测。
通过扩展和应用新型 GWAS/QTL 共定位方法来实现分子机制。
在目标 2 中,我们将使用大规模并行报告分析 (MPRA) 来验证这些活动、变体。
开发复杂的机器学习模型,该模型可以学习监管语法并在整个过程中对变体进行评分
GWAS 位点的预测因果变异将通过 Aim 中的 MPRA 进行进一步评估
1 并应用于目标 3。在目标 3 中,我们将演示如何使用我们的方法改进因果变异的检测
单细胞知情模型有助于多基因风险评分在人群中的可转移性。
我们将提供开放资源和可重复的计算方法以及集成的管道
来自多个大脑区域的单细胞染色质可及性数据这将允许检测细胞类型特异性。
心理健康 GWAS 中的遗传效应和病理细胞类型,在之间建立强有力的因果联系
变异、基因和疾病,并提高疾病风险的预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anshul Kundaje其他文献
Anshul Kundaje的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anshul Kundaje', 18)}}的其他基金
Multi-Omics DACC: The Data Analysis and Coordination Center for the collaborative multi-omics for health and disease initiative
多组学 DACC:健康和疾病协作多组学计划的数据分析和协调中心
- 批准号:
10744561 - 财政年份:2023
- 资助金额:
$ 61.62万 - 项目类别:
A Comprehensive Genomic Community Resource of Transcriptional Regulation
转录调控的综合基因组群落资源
- 批准号:
10411262 - 财政年份:2022
- 资助金额:
$ 61.62万 - 项目类别:
A Comprehensive Genomic Community Resource of Transcriptional Regulation
转录调控的综合基因组群落资源
- 批准号:
10842047 - 财政年份:2022
- 资助金额:
$ 61.62万 - 项目类别:
A Comprehensive Genomic Community Resource of Transcriptional Regulation
转录调控的综合基因组群落资源
- 批准号:
10625529 - 财政年份:2022
- 资助金额:
$ 61.62万 - 项目类别:
Identifying causal genetic variants and molecular mechanisms impacting mental health
识别影响心理健康的因果遗传变异和分子机制
- 批准号:
10116649 - 财政年份:2021
- 资助金额:
$ 61.62万 - 项目类别:
Predicting context-specific molecular and phenotypic effects of genetic variation through the lens of the cis-regulatory code
通过顺式调控密码的视角预测遗传变异的特定背景分子和表型效应
- 批准号:
10297562 - 财政年份:2021
- 资助金额:
$ 61.62万 - 项目类别:
Predicting context-specific molecular and phenotypic effects of genetic variation through the lens of the cis-regulatory code
通过顺式调控密码的视角预测遗传变异的特定背景分子和表型效应
- 批准号:
10474459 - 财政年份:2021
- 资助金额:
$ 61.62万 - 项目类别:
Multi-omic functional assessment of novel AD variants using high-throughput and single-cell technologies
使用高通量和单细胞技术对新型 AD 变体进行多组学功能评估
- 批准号:
10436207 - 财政年份:2021
- 资助金额:
$ 61.62万 - 项目类别:
Identifying causal genetic variants and molecular mechanisms impacting mental health
识别影响心理健康的因果遗传变异和分子机制
- 批准号:
10571911 - 财政年份:2021
- 资助金额:
$ 61.62万 - 项目类别:
Predicting context-specific molecular and phenotypic effects of genetic variation through the lens of the cis-regulatory code
通过顺式调控密码的视角预测遗传变异的特定背景分子和表型效应
- 批准号:
10659170 - 财政年份:2021
- 资助金额:
$ 61.62万 - 项目类别:
相似国自然基金
AMPKα1线粒体定位对急性肾损伤影响及其机制
- 批准号:82360142
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超急性期免疫表征影响脑卒中预后研究
- 批准号:
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:
eIF2α/ATF3通路调控CPT1α影响线粒体稳态在急性肾损伤慢性化中的机制研究
- 批准号:82300838
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高甘油三酯通过TLR4/caspase-8影响急性胰腺炎CD4+T细胞程序性死亡的机制研究
- 批准号:82360135
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Dissecting Cell Type Specific Functions of CHD7 in Development of the Neocortex
剖析 CHD7 在新皮质发育中的细胞类型特异性功能
- 批准号:
10732823 - 财政年份:2023
- 资助金额:
$ 61.62万 - 项目类别:
Distinct Glycophenotypes with Abnormal Signaling Define a Subpopulation of B cells Responsible for Production of Galactose-Deficient IgA1, the Main Autoantigen in IgA Nephropathy
具有异常信号传导的独特糖表型定义了负责产生半乳糖缺陷型 IgA1(IgA 肾病的主要自身抗原)的 B 细胞亚群
- 批准号:
10563618 - 财政年份:2023
- 资助金额:
$ 61.62万 - 项目类别:
Elucidating the role of trained immunity in kidney transplant patients
阐明训练有素的免疫力在肾移植患者中的作用
- 批准号:
10642596 - 财政年份:2023
- 资助金额:
$ 61.62万 - 项目类别:
Acetyl CoA Carboxylase in the Metabolic Control of Inflammation
乙酰辅酶A羧化酶在炎症代谢控制中的作用
- 批准号:
10660439 - 财政年份:2023
- 资助金额:
$ 61.62万 - 项目类别:
Tools for reversible short-term degradation of TCF-1 to address its molecular functions
用于 TCF-1 可逆短期降解以解决其分子功能的工具
- 批准号:
10647571 - 财政年份:2023
- 资助金额:
$ 61.62万 - 项目类别: