Development of Technologies for Efficient In Vivo Prime Editing
高效体内 Prime 编辑技术的开发
基本信息
- 批准号:10381534
- 负责人:
- 金额:$ 53.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:Amyotrophic Lateral SclerosisBasic ScienceBiologicalBiotechnologyCRISPR/Cas technologyCarrying CapacitiesCellsChromosomal translocationClinical ResearchClinical TrialsComputational BiologyCultured CellsDNADNA Double Strand BreakDNA SequenceDataDevelopmentElementsEngineeringEvaluationExperimental DesignsFutureGTP-Binding Protein alpha Subunits, GsGene DeliveryGenesGenomeGenomic DNAGenomic approachImmune responseKnowledgeLeadMachine LearningMediatingMethodologyMethodsMitoticModificationMutationNonsense MutationOpen Reading FramesOutcomePathogenicityPeptide Signal SequencesPoly APositioning AttributeRegulatory ElementResearchResearch PersonnelRoleSiteSite-Directed MutagenesisSpecificitySystemTechnologyTestingTherapeuticTimeTissuesTrans-SplicingVariantadeno-associated viral vectorbasebase editorbiophysical techniquescell typecomputational suitedelivery vehicledesignexperienceexperimental studyflexibilitygene therapygenome editinghuman diseaseimmunogenicimprovedin vivoinnovationinsertion/deletion mutationinteinminiaturizemultidisciplinarynovelnucleaseparticlepredictive modelingpreventprime editingprime editorprogramspromoterreconstitutionresponsesuccesstechnology developmenttechnology research and developmenttool
项目摘要
PROJECT SUMMARY
Genome editing is revolutionizing biomedicine and biotechnology by enabling the precise modification of
genomic DNA in living cells. While various genome-editing tools have been developed over the past decade, the
CRISPR-Cas9 system has emerged as a particularly versatile and efficient technology for editing DNA.
Nonetheless, limitations derived from its reliance on DNA double strand breaks (DSB), which can lead to
unpredictable editing outcomes and even chromosomal translocations, could limit its applications.
Base editors (BEs) and prime editors (PEs) are two novel classes of genome-editing tools capable of
introducing precise single-base conversion in DNA without the requirement of a DSB. PEs, in particular, provide
greater flexibility than BEs, owing to their ability to introduce any type of base conversion and even programable
small insertions and deletions. This expanded set of capabilities compared to other technologies makes PEs a
particularly promising platform for applications in biomedicine; however, the large size of PEs precludes their in
vivo delivery by AAV, a promising and effective gene delivery vehicle that is currently under evaluation in multiple
clinical trials.
To overcome these obstacles, we have created a split-PE platform that is compatible with AAV delivery and
have demonstrated the functionality of this approach in cultured cells. Despite this progress, there still remain
several critical challenges, which we here propose to overcome in order to optimize this technology for effective
and specific in vivo prime editing.
To accomplish this objective, we have assembled a multidisciplinary team with collective expertise in genome
editing (Dr. Perez-Pinera), AAV gene delivery (Dr. Gaj) and computational biology (Dr. Song). Our collaborative
efforts will yield an integrated and comprehensive PE toolset that will blend strategies for target identification and
editing optimization, with methods for reducing off-target effects and immune responses, thus priming this
technology for future in vivo applications.
Given that the flexibility of PEs has significantly expanded the number of actionable target sites that can be
genetically modified, we anticipate that the integrated technologies we develop will have large, direct and long-
lasting impact in biomedicine by enabling not only novel gene therapies, but also basic research. In particular,
our technology will provide investigators with biological tools that are uniquely capable of introducing mutations
within post-mitotic cells in vivo, which could be used to dissect functional elements or even determine the role of
pathogenic mutations in a cell- and tissue-specific manner. The technologies created by this application will thus
broadly impact biotechnology and biomedicine.
项目概要
基因组编辑通过精确修改基因组来彻底改变生物医学和生物技术
活细胞中的基因组 DNA。尽管在过去十年中已经开发了各种基因组编辑工具,
CRISPR-Cas9 系统已成为一种特别通用且高效的 DNA 编辑技术。
尽管如此,其对 DNA 双链断裂 (DSB) 的依赖仍存在局限性,这可能会导致
不可预测的编辑结果,甚至染色体易位,可能会限制其应用。
碱基编辑器 (BE) 和主编辑器 (PE) 是两类新颖的基因组编辑工具,能够
在 DNA 中引入精确的单碱基转换,无需 DSB。 PE 尤其提供
比 BE 具有更大的灵活性,因为它们能够引入任何类型的基数转换,甚至是可编程的
小的插入和删除。与其他技术相比,这种扩展的功能使 PE 成为
特别有前景的生物医学应用平台;然而,PE 的大尺寸阻碍了它们的应用
AAV 体内递送是一种有前途且有效的基因递送载体,目前正在多个方面进行评估
临床试验。
为了克服这些障碍,我们创建了一个与 AAV 交付兼容的 split-PE 平台
已经在培养细胞中证明了这种方法的功能。尽管取得了这些进展,但仍然存在
我们在此建议克服几个关键挑战,以优化该技术以实现有效的
和特定的体内prime编辑。
为了实现这一目标,我们组建了一支具有基因组专业知识的多学科团队
编辑(Perez-Pinera 博士)、AAV 基因传递(Gaj 博士)和计算生物学(Song 博士)。我们的合作
努力将产生一个综合的、全面的 PE 工具集,它将融合目标识别和
编辑优化,采用减少脱靶效应和免疫反应的方法,从而启动这一过程
未来体内应用的技术。
鉴于 PE 的灵活性显着增加了可操作的目标站点的数量
转基因,我们预计我们开发的综合技术将具有大规模、直接和长期的作用。
不仅可以实现新型基因疗法,还可以进行基础研究,从而对生物医学产生持久影响。尤其,
我们的技术将为研究人员提供具有独特能力引入突变的生物工具
在体内有丝分裂后细胞内,可用于剖析功能元件,甚至确定
以细胞和组织特异性方式发生致病性突变。因此,该应用程序创建的技术将
广泛影响生物技术和生物医学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pablo Perez-Pinera其他文献
Pablo Perez-Pinera的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pablo Perez-Pinera', 18)}}的其他基金
Development of Technologies for Efficient In Vivo Prime Editing
高效体内 Prime 编辑技术的开发
- 批准号:
10580008 - 财政年份:2021
- 资助金额:
$ 53.63万 - 项目类别:
Development of Technologies for Efficient In Vivo Prime Editing
高效体内 Prime 编辑技术的开发
- 批准号:
10184207 - 财政年份:2021
- 资助金额:
$ 53.63万 - 项目类别:
Engineering platforms for editing RNA with single base resolution
单碱基分辨率 RNA 编辑工程平台
- 批准号:
9922944 - 财政年份:2018
- 资助金额:
$ 53.63万 - 项目类别:
相似国自然基金
先进航空发动机中超临界态煤油燃烧过程中的基础科学问题研究
- 批准号:52336006
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
极端高温环境流动沸腾技术的基础科学问题及关键材料研究
- 批准号:52333015
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
含氮杂环配体聚合物结构精准调控与功能涂层材料表界面基础科学问题研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
耐高温高电压SiC功率器件灌封材料的多性能协同中的基础科学问题研究
- 批准号:52272001
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
轻量化低脉动高可靠直驱式永磁电机系统基础科学问题与关键技术研究
- 批准号:52237002
- 批准年份:2022
- 资助金额:269 万元
- 项目类别:重点项目
相似海外基金
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
- 批准号:
10701238 - 财政年份:2023
- 资助金额:
$ 53.63万 - 项目类别:
A nanosized magnetic particle system for fast and efficient neuronal extracellular vesicle enrichment from plasma
一种纳米磁性粒子系统,用于从血浆中快速有效地富集神经元细胞外囊泡
- 批准号:
10820640 - 财政年份:2023
- 资助金额:
$ 53.63万 - 项目类别:
The Protein Aggregation Conference: Exploring Rugged Landscapes
蛋白质聚集会议:探索崎岖的地形
- 批准号:
10681615 - 财政年份:2023
- 资助金额:
$ 53.63万 - 项目类别:
CSHL 2022 Neurodegenerative Diseases: Biology & Therapeutics Conference
CSHL 2022 神经退行性疾病:生物学
- 批准号:
10539022 - 财政年份:2022
- 资助金额:
$ 53.63万 - 项目类别:
TDP43 Degradation by the Lysosomal Proteases in Amyotrophic Lateral Sclerosis
肌萎缩侧索硬化症中溶酶体蛋白酶对 TDP43 的降解
- 批准号:
10650830 - 财政年份:2022
- 资助金额:
$ 53.63万 - 项目类别: