Engineering Spatiotemporal Osteochondral Tissue Formation with Tunable 3D-Printed Scaffolds
使用可调谐 3D 打印支架工程设计时空骨软骨组织形成
基本信息
- 批准号:10373762
- 负责人:
- 金额:$ 16.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAddressAdultAffectAgeAmericanBMP2 geneBiochemicalBiocompatible MaterialsBone MarrowCartilageCartilage injuryCell Culture TechniquesCellsChemistryChondrocytesChondrogenesisClinicalClinical EngineeringCuesDefectDegenerative polyarthritisDepositionDevelopmentDiseaseEarly treatmentEconomic BurdenEngineeringEventFibrocartilagesGrowth FactorHealthcare SystemsHumanImplantIn SituIn VitroInferiorInkInterventionJointsKnowledgeLifeLocationMechanicsMedicareMedicineMesenchymal Stem CellsNatural regenerationOperative Surgical ProceduresOrthopedicsOsteoblastsOsteogenesisOutcomePainPathologyPatientsPeptidesPolymersProteinsQuality of lifeReplacement ArthroplastyResearchResolutionSurfaceTechniquesTestingTherapeuticTimeTissue EngineeringTissue constructsTissuesTransforming Growth FactorsUnited StatesWorkadult stem cellarticular cartilagebasebiodegradable scaffoldbonecartilage developmentcartilage regenerationcartilage repairclinically relevantdebilitating paindesigndrug discoveryfunctional outcomeshuman old age (65+)improvedin vitro Modelinnovationjoint destructionjoint functionosteochondral tissueosteogenicpatient mobilitypeptidomimeticspreventprogramsrepairedreplacement tissueresponsescaffoldspatiotemporalstem cell differentiationstem cellssuccess
项目摘要
PROJECT SUMMARY
Osteoarthritis is a degenerative joint disease that affects 70% of adults over age 65, but the initial cartilage injury
usually occurs much earlier in life. Progressive joint degeneration during adulthood continues because cartilage
has very limited ability to self-repair. Current surgical interventions to repair cartilage defects at early stages
result in low quality tissue with limited long-term success. The new tissue degrades over time, which increases
exposure of the underlying bone and leads to debilitating pain. Many patients ultimately seek relief through total
joint replacement to regain mobility and improve quality of life. However, over half of all joint replacement patients
in the United States are under age 65. These younger patients are expected to outlive their implants and may
require one or more revision surgeries over their lifetime. This places a significant burden on the healthcare
system, especially the Medicare program.
The objective of this project is to develop a promising biomaterials-based approach that addresses a persistent
challenge in orthopaedic medicine—the need for long-lasting treatments for early-stage cartilage defects. This
work involves an innovative combination of 3D printing and biomaterials design to fabricate biodegradable
scaffolds for functional cartilage repair. To achieve this, the scaffolds are engineered to guide regeneration of
the entire osteochondral tissue to improve bone-cartilage integration and durability. Scaffolds will be fabricated
by 3D printing polymer-based “inks” that include special chemistries to localize specific biochemical cues called
peptides. These peptides can be designed to direct formation of bone or cartilage tissue. The inks will be spatially
deposited using 3D printing to create distinct bone-promoting and cartilage-promoting regions within a
continuous construct. Notably, the bioactive peptides can be introduced over time to mimic compositional
changes that occur during articular cartilage development.
The proposed research plan includes two specific aims designed to study how human mesenchymal stem cells
(adult stem cells found in bone marrow) respond to scaffolds presenting bone-promoting and cartilage-promoting
peptides. We hypothesize that spatially presenting these peptides over time to mimic events that occur during
development will promote stable osteochondral tissue formation. The first aim will investigate how modifying the
presentation of these peptides over time in the presence of stem cells influences their differentiation, or transition,
into bone-like or cartilage-like states. The second aim will examine how spatially presenting both peptides in the
same scaffold guides local stem cell differentiation into bone-like and cartilage-like tissue regions. The proposed
approach is powerful because it exploits high-resolution 3D printing to produce scaffolds with highly tunable
compositions designed to direct osteochondral interface regeneration. This is a key requirement for long-term
functional cartilage repair. This work will lead to breakthroughs in the ability to engineer clinically relevant tissue
replacements that prevent the onset or debilitating progression of osteoarthritis.
项目概要
骨关节炎是一种退行性关节疾病,影响 70% 65 岁以上的成年人,但最初的软骨损伤
由于软骨的存在,通常会在成年后进行性关节退化。
目前修复早期软骨缺损的手术干预能力非常有限。
导致组织质量低下,长期成功有限。新组织会随着时间的推移而降解,并且降解程度会增加。
下面的骨头暴露并导致令人衰弱的疼痛,许多患者最终寻求完全缓解。
关节置换术以恢复活动能力并改善生活质量然而,超过一半的关节置换患者。
在美国,年龄在 65 岁以下。这些年轻患者预计比植入物的寿命更长,并且可能
在其一生中需要进行一次或多次翻修手术,这给医疗保健带来了沉重的负担。
制度,特别是医疗保险计划。
该项目的目标是开发一种有前途的基于生物材料的方法,解决持久性问题
骨科医学面临的挑战——需要对早期软骨缺陷进行长期治疗。
工作涉及 3D 打印和生物材料设计的创新结合,以制造可生物降解的
用于功能性软骨修复的支架 为了实现这一目标,支架被设计用于引导软骨再生。
将制造整个骨软骨组织以改善骨软骨整合和耐用性。
通过 3D 打印基于聚合物的“墨水”,其中包含特殊的化学物质,可以定位特定的生化线索,称为
这些肽可被设计用于引导骨或软骨组织的形成。
使用 3D 打印沉积,在一个区域内创建独特的骨促进和软骨促进区域
值得注意的是,可以随着时间的推移引入生物活性肽以模拟成分。
关节软骨发育过程中发生的变化。
拟议的研究计划包括两个具体目标,旨在研究人类间充质干细胞如何
(骨髓中发现的成体干细胞)对促进骨和促进软骨的支架做出反应
我们捕捉到这些肽随着时间的推移在空间上呈现,以模拟期间发生的事件。
发育将促进稳定的骨软骨组织形成。第一个目标是研究如何改变骨软骨组织。
在干细胞存在的情况下,随着时间的推移,这些肽的呈现会影响它们的分化或转变,
第二个目标是研究两种肽在空间上的呈现方式。
相同的支架引导局部干细胞分化为骨样和软骨样组织区域。
该方法非常强大,因为它利用高分辨率 3D 打印来生产高度可调的支架
旨在指导骨软骨界面再生的组合物这是长期的关键要求。
这项工作将在设计临床相关组织的能力方面取得突破。
预防骨关节炎发作或使人衰弱的进展的替代品。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lesley W Chow其他文献
Immunomodulatory Strategies for Cartilage Regeneration in Osteoarthritis.
骨关节炎软骨再生的免疫调节策略。
- DOI:
10.1089/ten.tea.2023.0255 - 发表时间:
2023-12-21 - 期刊:
- 影响因子:0
- 作者:
Orlaith Kennedy;Andrew Kitson;Chiebuka Okpara;Lesley W Chow;Tomas Gonzalez Fern;ez;ez - 通讯作者:
ez
Lesley W Chow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lesley W Chow', 18)}}的其他基金
Engineering Spatiotemporal Osteochondral Tissue Formation with Tunable 3D-Printed Scaffolds
使用可调谐 3D 打印支架工程设计时空骨软骨组织形成
- 批准号:
10629168 - 财政年份:2022
- 资助金额:
$ 16.69万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Wearable Wireless Respiratory Monitoring System that Detects and Predicts Opioid Induced Respiratory Depression
可穿戴无线呼吸监测系统,可检测和预测阿片类药物引起的呼吸抑制
- 批准号:
10784983 - 财政年份:2023
- 资助金额:
$ 16.69万 - 项目类别:
3D Printed Microfluidic Artificial Lung for Veteran Rehabilitation
用于退伍军人康复的 3D 打印微流控人工肺
- 批准号:
10629531 - 财政年份:2023
- 资助金额:
$ 16.69万 - 项目类别:
Improving the Safety and Quality of Eye Plaque Brachytherapy by Assembly with Intensity Modulated Loading
通过调强加载组装提高眼斑近距离治疗的安全性和质量
- 批准号:
10579754 - 财政年份:2023
- 资助金额:
$ 16.69万 - 项目类别:
Production of 3D Bioprinted Autologous Vaginal Tissue Constructs for Reconstructive Applications
生产用于重建应用的 3D 生物打印自体阴道组织结构
- 批准号:
10672642 - 财政年份:2023
- 资助金额:
$ 16.69万 - 项目类别:
Dose Flexible Combination 3D-Printed Delivery Systems for Antiviral Therapy in Children
用于儿童抗病毒治疗的剂量灵活组合 3D 打印输送系统
- 批准号:
10682185 - 财政年份:2023
- 资助金额:
$ 16.69万 - 项目类别: