Development and Evaluation of Personalized Explainable Machine Learning Models to Predict and Prevent Nocturnal Hypoglycemia in Type 1 Diabetes
开发和评估个性化可解释机器学习模型以预测和预防 1 型糖尿病夜间低血糖
基本信息
- 批准号:10373516
- 负责人:
- 金额:$ 16.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-21 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAdultAffectAlgorithmsBedsBig DataCarbohydratesCellular PhoneCessation of lifeClinicClinical ResearchConsumptionCross-Over StudiesDangerousnessDataData SetDetectionDevelopmentEmergency CareEngineeringEvaluationEventExerciseFiberFrightGlucoseHumanHyperglycemiaHypoglycemiaIndividualInfusion PumpsInjection of therapeutic agentInjectionsInjuryInsulinInsulin-Dependent Diabetes MellitusInterventionLearningMachine LearningMacronutrients NutritionMeasurementMeasuresModelingNutrientOutcome MeasureParticipantPhasePhysical activityPsychological TransferPumpRandomizedRegistriesRiskRunningSeizuresSensitivity and SpecificitySleepSpecificitySymptomsSyndromeSystemTestingTimeTrainingUnconscious StateUpdateWireless Technologybaseblood glucose regulationcohortcomparison interventiondata managementdesigndiabetes managementdiabetes mellitus therapyexperienceglycemic controlhigh riskhypoglycemia unawarenessimprovedintervention effectlarge datasetspersonalized decisionpoor sleeppopulation basedprediction algorithmpredictive modelingpreventprimary outcomerecruitsecondary outcomesensorsensor technologyside effectsimulationsleep qualitysubcutaneoussupport tools
项目摘要
Development and Evaluation of Personalized Explainable Machine Learning Models to Predict and
Prevent Nocturnal Hypoglycemia in Type 1 Diabetes
Project Summary
Hypoglycemia (glucose < 70 mg/dL) remains the limiting factor for achieving optimal glycemic control in type 1
diabetes (T1D), with nocturnal hypoglycemia being particularly dangerous. Nocturnal hypoglycemia may result
in physical injury, poor sleep quality, fear of hypoglycemia, and hypoglycemia unawareness. Severe episodes
can cause seizures and unconsciousness requiring emergency care, and even death (dead in bed syndrome).
While automated insulin delivery (AID) systems have shown benefits in glucose control during the night,
nighttime hypoglycemia still occurs. Moreover, many people with T1D manage their glucose with continuous
subcutaneous infusion pump (CSII) therapy or multiple daily insulin injections (MDI) therapy. Data updated
between 2013 and 2014 from 16,061 individuals with T1D participating in the T1D Exchange clinic registry
showed that approximately 40% participants managed their glucose with MDI. In this project, we propose to
develop and evaluate a personalized decision support tool that collects and analyzes glucose measurements,
insulin, meals, and physical activity data to predict at bedtime the likelihood of overnight hypoglycemia and
recommend a proactive carbohydrate intervention to substantially reduce nocturnal hypoglycemia. In the
engineering development phase of the project, we will use unique datasets of time-matched glucose
management data (i.e., continuous glucose measurements, insulin, meals, and exercise) from pump, closed-
loop and MDI users to extract information about the major contributors to nocturnal hypoglycemia risk and train
a population-based prediction model that will be personalized over time to better capture inter-subject
variability. We will design a bedtime intervention consisting of a bedtime smart snack with variable nutrient
content that can prevent nighttime hypoglycemia. Snacks will vary by macronutrient content and size to
optimize time to peak post-prandial glycemia that will match the timing to predicted episode of hypoglycemia.
We will conduct a randomized cross-over study to evaluate our smartphone-based decision support tool on a
cohort of 20 people with T1D who are MDI users and are at higher risk of experiencing hypoglycemia.
Participants will be randomly assigned to either first use CGM only (control period) followed by a smartphone-
based decision support tool + nocturnal hypoglycemia intervention (intervention period), or vice-versa. The
control and intervention periods will have a duration of three weeks each. We will measure the effect of the
intervention by comparing the percent time in nocturnal hypoglycemia during the control period vs. the
intervention period. We will also retrospectively measure the accuracy of the prediction model in predicting
nocturnal hypoglycemia using data from the control period. We expect that the proposed bedtime intervention
will lead to a significant reduction in time spent in hypoglycemia overnight of at least 50% reduction relative to
baseline.
开发和评估个性化可解释的机器学习模型来预测和评估
预防 1 型糖尿病夜间低血糖
项目概要
低血糖(血糖 < 70 mg/dL)仍然是 1 型患者实现最佳血糖控制的限制因素
糖尿病(T1D),其中夜间低血糖尤其危险。可能会导致夜间低血糖
身体损伤、睡眠质量差、害怕低血糖、低血糖不自觉等。严重发作
可能导致癫痫发作和意识不清,需要紧急护理,甚至死亡(死在床上综合症)。
虽然自动胰岛素输送 (AID) 系统已显示出在夜间血糖控制方面的优势,
夜间低血糖仍会发生。此外,许多 T1D 患者通过持续控制血糖来控制血糖。
皮下输液泵(CSII)疗法或每日多次胰岛素注射(MDI)疗法。数据已更新
2013 年至 2014 年间,参与 T1D Exchange 诊所登记的 16,061 名 T1D 患者
研究表明,大约 40% 的参与者通过 MDI 控制血糖。在这个项目中,我们建议
开发和评估个性化决策支持工具,用于收集和分析血糖测量值,
胰岛素、膳食和体力活动数据可在睡前预测夜间低血糖的可能性,
建议采取积极的碳水化合物干预措施,以大幅减少夜间低血糖。在
在该项目的工程开发阶段,我们将使用时间匹配的葡萄糖的独特数据集
来自泵的管理数据(即连续血糖测量、胰岛素、膳食和运动)
循环和 MDI 用户提取有关夜间低血糖风险的主要因素的信息并进行培训
基于人群的预测模型,将随着时间的推移进行个性化,以更好地捕捉主体间的关系
可变性。我们将设计一种睡前干预措施,包括含有多种营养成分的睡前智能零食
可以预防夜间低血糖的内容。零食会根据大量营养素的含量和大小而有所不同
优化餐后血糖达到峰值的时间,使其与预测的低血糖发作时间相匹配。
我们将进行一项随机交叉研究,以评估我们基于智能手机的决策支持工具
20 名 T1D 患者组成的队列,他们是 MDI 用户,发生低血糖的风险较高。
参与者将被随机分配到首先仅使用 CGM(控制期),然后使用智能手机-
基于决策支持工具+夜间低血糖干预(干预期),或反之亦然。这
控制期和干预期各持续三周。我们将衡量效果
通过比较对照组和对照组期间夜间低血糖的时间百分比来进行干预
干预期。我们还将回顾性地衡量预测模型在预测方面的准确性
使用对照期的数据进行夜间低血糖。我们预计拟议的睡前干预
将导致夜间发生低血糖的时间显着减少,相对于
基线。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clara Marcela Mosquera-Lopez其他文献
Clara Marcela Mosquera-Lopez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clara Marcela Mosquera-Lopez', 18)}}的其他基金
Development and Evaluation of Personalized Explainable Machine Learning Models to Predict and Prevent Nocturnal Hypoglycemia in Type 1 Diabetes
开发和评估个性化可解释机器学习模型以预测和预防 1 型糖尿病夜间低血糖
- 批准号:
10491126 - 财政年份:2021
- 资助金额:
$ 16.26万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
成人与儿童结核病发展的综合研究:细菌菌株和周围微生物组的影响
- 批准号:81961138012
- 批准年份:2019
- 资助金额:100 万元
- 项目类别:国际(地区)合作与交流项目
统计学习影响成人汉语二语学习的认知神经机制
- 批准号:31900778
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 16.26万 - 项目类别:
Genetic and Environmental Influences on Individual Sweet Preference Across Ancestry Groups in the U.S.
遗传和环境对美国不同血统群体个体甜味偏好的影响
- 批准号:
10709381 - 财政年份:2023
- 资助金额:
$ 16.26万 - 项目类别:
A daily diary study examining prospective associations between minutes of daily dating app use, affect, and HIV risk among young sexual minority men
一项每日日记研究,探讨年轻性少数男性每日使用约会应用程序的时间、影响和艾滋病毒风险之间的前瞻性关联
- 批准号:
10762708 - 财政年份:2023
- 资助金额:
$ 16.26万 - 项目类别:
Cognitive Decline and Incident Dementia in Older Patients with Secondary Hyperparathyroidism
继发性甲状旁腺功能亢进症老年患者的认知能力下降和痴呆
- 批准号:
10587339 - 财政年份:2023
- 资助金额:
$ 16.26万 - 项目类别: