Imaging-based tumor forecasting to predict brain tumor progression and response to therapy
基于成像的肿瘤预测可预测脑肿瘤进展和治疗反应
基本信息
- 批准号:10367617
- 负责人:
- 金额:$ 68.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-19 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAreaBiologicalBiological ProcessBlood VesselsBrainBrain NeoplasmsCellularityCharacteristicsClinicalCommunitiesDataDiseaseEvolutionFailureFamilyFutureGeneticGlioblastomaGliomaGoalsHumanHypoxiaImageIndividualInfrastructureMagnetic Resonance ImagingMalignant neoplasm of brainMathematicsMethodsModelingNecrosisPatient CarePatientsPositioning AttributePrediction of Response to TherapyProtocols documentationRadiationRadiation therapyRadiology SpecialtyResolutionSignal PathwayTechniquesTestingTimeTissuesTranslationsTreatment ProtocolsTumor BurdenValidationVisionVisualizationangiogenesisbasechemotherapyclinical applicationcontrast enhancedfluorescence imagingin vivoindividual patientindividual responsemathematical modelneoplastic cellnoveloptical imagingpatient derived xenograft modelpatient responsepre-clinicalpredicting responsepredictive modelingprogramsradiological imagingresponsespatiotemporalstandard of caresuccesstemozolomidetherapy resistanttooltreatment optimizationtreatment responsetumortumor growthtumor heterogeneitytumor progression
项目摘要
The vision for this program is to develop tumor forecasting methods to predict and optimize the response of
glioblastoma multiforme to standard-of-care therapies—and do so on a tumor-specific basis. A fundamental
challenge in the care of patients with brain tumors is the limitation of standard radiographic methods to
accurately evaluate, let alone predict, patient response. We propose to address this shortcoming by developing
predictive, biologically-based mathematical models that incorporate the hallmark characteristics of brain tumor
growth (e.g., tumor induced angiogenesis, hypoxia, necrosis, proliferation, invasion, and resistance to therapy)
that can be initialized using advanced, subject-specific imaging data. This project will address two critical gaps
in the care of patients battling brain cancer. First, our imaging-based, mathematical framework accounts for
subject-specific characteristics and treatment regimens on model predictions. Second, in most studies, the
ground truth used for validation of the predictive model is whether the model can predict future regional
contrast enhancement, despite the well-known limitations of this qualitative MRI feature. Thus, while prior
human studies have demonstrated the potential of predictive modeling, its translation into a realistic radiologic
tool is fundamentally hindered by lack of systematic, pre-clinical validation where critical tumor characteristics
(e.g., tumor heterogeneity and whole brain tumor cell distribution) can be precisely known and rigorously
controlled. To overcome these limitations, we aim to: 1) establish the accuracy of tumor-specific modeling to
predict spatiotemporal progression and 2) establish the accuracy of tumor-specific modeling to predict
therapeutic response. Experimentally, we will construct a family of mathematical models that employ
quantitative MRI data to capture the fundamental biological features of glioblastoma. These data are
longitudinally acquired in patient derived xenografts that are treatment naïve or undergoing radiotherapy and/or
chemotherapy. The model family is then calibrated with these data and a novel model selection strategy is
employed to choose the most parsimonious model for predicting the spatio-temporal evolution of each tumor
which is then compared to MRI data collected at future time points. Model predictions of tumor progression
will be validated via registration to 3D fluorescent images of cleared ex vivo tissue, a technique that enables
visualization of whole brain tumor burden. We will provide the clinical and scientific community with a
validated mathematical description of glioma progression that can reliably predict progression and therapy
response across a range of relevant glioma signaling pathways and can be readily applied to the clinical setting.
该计划的愿景是开发肿瘤预测方法来预测和优化肿瘤的反应
多形性胶质母细胞瘤转为标准护理疗法,并且是在肿瘤特异性的基础上进行的。
脑肿瘤患者护理中的挑战是标准放射线照相方法的局限性
我们建议通过开发来解决这一缺点,更不用说预测患者的反应了。
基于生物学的预测数学模型,结合了脑肿瘤的标志特征
生长(例如肿瘤诱导的血管生成、缺氧、坏死、增殖、侵袭和对治疗的抵抗)
可以使用先进的、特定于主题的成像数据进行初始化,该项目将解决两个关键差距。
首先,我们基于成像的数学框架考虑了脑癌患者的护理。
其次,在大多数研究中,模型预测的受试者特定特征和治疗方案。
用于验证预测模型的基本事实是该模型是否可以预测未来的区域
对比度增强,尽管这种定性 MRI 功能存在众所周知的局限性。
人类研究已经证明了预测模型的潜力,将其转化为现实的放射学模型
由于缺乏系统的临床前验证,该工具从根本上受到阻碍,其中关键的肿瘤特征
(例如,肿瘤异质性和全脑肿瘤细胞分布)可以被精确地了解和严格地
为了克服这些限制,我们的目标是:1)建立肿瘤特异性模型的准确性
预测时空进展,2) 建立肿瘤特异性模型的准确性来预测
在实验上,我们将构建一系列采用的数学模型。
MRI 数据捕捉胶质母细胞瘤的基本生物学特征。
在未经治疗或正在接受放射治疗的患者来源的异种移植物中纵向采集和/或
然后使用这些数据校准模型家族,并制定新的模型选择策略。
用于选择最简约的模型来预测每个肿瘤的时空演化
然后将其与未来时间点收集的 MRI 数据进行比较,模型预测肿瘤进展。
将通过配准已清除的离体组织的 3D 荧光图像进行验证,该技术使
我们将为临床和科学界提供全脑肿瘤负荷的可视化。
神经胶质瘤进展的经过验证的数学描述可以可靠地预测进展和治疗
跨一系列相关神经胶质瘤信号通路的反应,并且可以很容易地应用于临床环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Chad Quarles其他文献
Christopher Chad Quarles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Chad Quarles', 18)}}的其他基金
Relaxivity Contrast Imaging as Biomarker of Muscle Degeneration in ALS
弛豫对比成像作为 ALS 肌肉退化的生物标志物
- 批准号:
10783525 - 财政年份:2023
- 资助金额:
$ 68.44万 - 项目类别:
Imaging-based tumor forecasting to predict brain tumor progression and response to therapy
基于成像的肿瘤预测可预测脑肿瘤进展和治疗反应
- 批准号:
10706461 - 财政年份:2022
- 资助金额:
$ 68.44万 - 项目类别:
Relaxivity Contrast Imaging as Biomarker of Muscle Degeneration in ALS
弛豫对比成像作为 ALS 肌肉退化的生物标志物
- 批准号:
10357431 - 财政年份:2021
- 资助金额:
$ 68.44万 - 项目类别:
Multi-parametric Perfusion MRI for Therapy Response Assessment in Brain Cancer
多参数灌注 MRI 用于脑癌治疗反应评估
- 批准号:
9927886 - 财政年份:2020
- 资助金额:
$ 68.44万 - 项目类别:
Establishing the validity of brain tumor perfusion imaging
建立脑肿瘤灌注成像的有效性
- 批准号:
10373105 - 财政年份:2017
- 资助金额:
$ 68.44万 - 项目类别:
Establishing the Validity of Brain Tumor Perfusion Imaging
建立脑肿瘤灌注成像的有效性
- 批准号:
10734997 - 财政年份:2017
- 资助金额:
$ 68.44万 - 项目类别:
Establishing the validity of brain tumor perfusion imaging
建立脑肿瘤灌注成像的有效性
- 批准号:
9754786 - 财政年份:2017
- 资助金额:
$ 68.44万 - 项目类别:
MRI Assessment of Tumor Perfusion, Permeability and Cellularity
肿瘤灌注、渗透性和细胞结构的 MRI 评估
- 批准号:
8895276 - 财政年份:2011
- 资助金额:
$ 68.44万 - 项目类别:
MRI Assessment of Tumor Perfusion, Permeability and Cellularity
肿瘤灌注、渗透性和细胞结构的 MRI 评估
- 批准号:
9182174 - 财政年份:2011
- 资助金额:
$ 68.44万 - 项目类别:
MRI Assessment of Tumor Perfusion, Permeability and Cellularity
肿瘤灌注、渗透性和细胞结构的 MRI 评估
- 批准号:
8516473 - 财政年份:2011
- 资助金额:
$ 68.44万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 68.44万 - 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 68.44万 - 项目类别:
Understanding the mechanistic link between vascular dysfunction and Alzheimers disease-related protein accumulation in the medial temporal lobe
了解血管功能障碍与内侧颞叶阿尔茨海默病相关蛋白积累之间的机制联系
- 批准号:
10736523 - 财政年份:2023
- 资助金额:
$ 68.44万 - 项目类别:
A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
- 批准号:
10734465 - 财政年份:2023
- 资助金额:
$ 68.44万 - 项目类别: