Photo-hyperpolarized 13C MRI
光超极化 13C MRI
基本信息
- 批准号:10366910
- 负责人:
- 金额:$ 38.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-28 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionBiodistributionBiologicalBiological ProcessBiological SciencesCell NucleusCellsClinicalContrast MediaDataDefectDevelopmentDevicesDiamondDiseaseDisease ProgressionEnvironmentEquilibriumFutureHigh temperature of physical objectHourImageImaging DeviceImaging technologyIn SituInfrastructureLabelLengthLigandsLightLightingLongitudinal StudiesMagnetic Resonance ImagingMagnetic nanoparticlesMethodologyMethodsNatural regenerationNitrogenNoiseNuclearOpticsParticle SizePlayRelaxationResearchResearch PersonnelResolutionRoleSchemeSignal TransductionSpeedStructureStudy modelsSurfaceTechniquesTechnologyTemperatureTimeTissue imagingTissuesattenuationbasebiomaterial compatibilitybiomedical imagingcellular imagingclinical imagingcontrast imagingcostfluorescence imaginghigh resolution imagingimagerimaging agentimaging modalityimaging probeimmune imagingin vivoinnovationlight scatteringmagnetic fieldmicrowave electromagnetic radiationmolecular markermultidisciplinarynanodiamondnanoparticlenanosizednew technologynoveloptical imagingparticleportabilitypre-clinicalpreservationprototypesubmicrontechnology developmenttemporal measurementtissue phantomtooltreatment response
项目摘要
Summary. High resolution imaging in deep tissue (> 1 cm) environments can address a swathe of funda-
mental and applied problems in the elucidation of mechanisms of disease origin and progression. While fluores-
cence imaging is a workhorse technique for the cellular imaging of biological molecular markers, it suffers from
light scattering, and aberration distortions at tissue depths >1 mm. On the opposite end of the spectrum, mag-
netic resonance imaging (MRI) is a well-established and broadly employed pre-clinical and clinical imaging
method that has no practical limitations with respect to tissue depth, but it suffers from low resolution. In this
project we will innovate a new class of hyperpolarized 13C nanoparticle probes that can serve as efficient deep
tissue markers in MRI. Our central idea is to dramatically boost 13C NMR signal by means of (i) optical hyperpo-
larization that can be carried out at low magnetic fields and (ii) significant extension of 13C coherence times.
Specifically, we propose to develop MRI probes based on fluorescent nanodiamonds (FNDs) endowed with
nitrogen-vacancy (NV) centers. The electronic spins associated with NVs can be optically “hyperpolarized” and
that polarization to be effectively transferred to the diamond 13C nuclear spins, resulting in NMR signal enhance-
ment over three orders of magnitude vs. 13C thermal polarization at the fields of clinical MRI. In conjunction, by
implementing effective decoupling schemes we propose significantly extend the 13C spin coherences to be able
to interrogate them for second-long periods. The latter yields enormous signal gains, a multiplicative factor of
another 103- fold. Combining the gains due to hyperpolarization and spin coherence extensions permits a total
signal gain of ca. 106 for MRI, and will enable a significant improvement in spatial resolution. Moreover, since
the polarization is optically generated, this 13C photo-MRI (PMRI), can be carried out at low-field at a much lower
cost vs. conventional MRI infrastructure. In our method the spin polarization is regenerated optically, allowing for
acquiring MRI data repeatedly and enabling longitudinal studies. Furthermore, the FND particles are inherently
biocompatible, and their surfaces are amenable to a versatile set of targeting ligands. With this basis, we propose
to develop targetable fluorescent nanoparticle MRI probes that can be imaged with high fidelity with resolution
better than 20 um in deep tissue (>1 cm) settings. In addition to being bright MRI agents, the particles are also
bright fluorescent providing an option for a cross-examination of the agent biodistribution in histopathological
analysis. In order to realize the prospects of this novel technology, we propose to further develop the hyperpo-
larization and MR imaging methodologies, as well as boost hyperpolarizability of nanosized particles by optimiz-
ing their structure through synthesis and processing developments. We aim at transferring the PMRI technology
we demonstrated for micron-sized particles to the nanosized FND suitable for in vivo MRI. As a part of the
technology demonstration, we will construct a simple prototype PMRI imaging set-up on the benchtop (low-field)
and image FNDs in tissue phantoms, characterizing achievable metrics of resolution and imaging depth.
摘要:深层组织(> 1 cm)环境中的高分辨率成像可以解决一系列基础问题。
阐明疾病起源和进展机制中的心理和应用问题。
cence 成像是生物分子标记细胞成像的主力技术,但它存在以下问题:
组织深度 >1 毫米处的光散射和像差畸变,在光谱的另一端,mag-。
核磁共振成像 (MRI) 是一种成熟且广泛应用的临床前和临床成像技术
该方法对组织深度没有实际限制,但分辨率较低。
在该项目中,我们将创新一类新型超极化 13C 纳米粒子探针,该探针可作为高效的深
我们的中心思想是通过 (i) 光学超波谱显着增强 13C NMR 信号。
可以在低磁场下进行激光化,并且 (ii) 13C 相干时间显着延长。
具体来说,我们建议开发基于荧光纳米金刚石(FND)的 MRI 探针,该探针具有
与 NV 相关的电子自旋可以在光学上“超极化”并且
极化有效地转移到金刚石 13C 核自旋,从而导致 NMR 信号增强
与 13C 热极化相比,临床 MRI 领域的变化超过三个数量级。
实施有效的去耦方案,我们建议显着扩展 13C 自旋相干性,以便能够
询问它们第二长周期会产生巨大的信号增益,这是一个乘数因子。
结合超极化和自旋相干扩展带来的增益,总共可以增加 103 倍。
MRI 的信号增益约为 106,并将显着提高空间分辨率。
偏振是光学产生的,这种 13C 光 MRI (PMRI) 可以在低得多的低场下进行
与传统 MRI 基础设施的成本相比,在我们的方法中,自旋偏振是光学再生的,从而允许
重复采集 MRI 数据并进行纵向研究此外,FND 粒子本质上是具有特征的。
在此基础上,我们提出,它们具有生物相容性,并且其表面适合多种靶向配体。
开发可进行高保真分辨率成像的靶向荧光纳米粒子 MRI 探针
在深层组织 (>1 cm) 环境中优于 20 um 除了是明亮的 MRI 试剂外,这些颗粒也是明亮的 MRI 试剂。
明亮的荧光为组织病理学中药物生物分布的交叉检查提供了选择
为了实现这项新技术的前景,我们建议进一步开发hyperpo-
larization 和 MR 成像方法,以及通过优化提高纳米颗粒的超极化性
我们的目标是通过合成和加工开发来研究它们的结构。
我们证明了微米级颗粒到纳米级 FND 适合作为体内 MRI 的一部分。
技术演示,我们将在台式(低场)上构建一个简单的原型 PMRI 成像装置
和组织模型中的图像 FND,表征可实现的分辨率和成像深度指标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ashok Ajoy其他文献
Ashok Ajoy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ashok Ajoy', 18)}}的其他基金
相似国自然基金
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
金融科技驱动的供应链库存与融资策略和技术采用合作机制研究
- 批准号:72371117
- 批准年份:2023
- 资助金额:39 万元
- 项目类别:面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Vascularized Islet transplantation NICHE with local immunosuppression for the treatment of type 1 diabetes
血管化胰岛移植 NICHE 结合局部免疫抑制治疗 1 型糖尿病
- 批准号:
10656255 - 财政年份:2022
- 资助金额:
$ 38.56万 - 项目类别:
Vascularized NICHE with local immunosuppression for cell replacement for Type 1 diabetes
带有局部免疫抑制的血管化 NICHE 用于细胞替代治疗 1 型糖尿病
- 批准号:
10704182 - 财政年份:2022
- 资助金额:
$ 38.56万 - 项目类别:
Vascularized NICHE with local immunosuppression for cell replacement for Type 1 diabetes
带有局部免疫抑制的血管化 NICHE 用于细胞替代治疗 1 型糖尿病
- 批准号:
10704182 - 财政年份:2022
- 资助金额:
$ 38.56万 - 项目类别:
Image-guided, intra-arterial delivery of antibodies to the central nervous system
图像引导、动脉内将抗体输送至中枢神经系统
- 批准号:
10604318 - 财政年份:2021
- 资助金额:
$ 38.56万 - 项目类别: