Cardiac resident macrophages in AV node conduction
心脏常驻巨噬细胞参与房室结传导
基本信息
- 批准号:10365141
- 负责人:
- 金额:$ 76.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-01 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:AblationAdoptedApoptosisAtrioventricular BlockAutopsyBiological AssayBiomedical EngineeringCSF3 geneCardiacCardiac MyocytesCause of DeathCellsCommunicationConfocal MicroscopyConnexin 43ConnexinsCouplingDataDevicesDiphtheria ToxinDiseaseDoseElectrocardiogramElectrophysiology (science)EtiologyExtracellular MatrixFibrosisGeneticGranulocyte-Macrophage Colony-Stimulating FactorHeartHeterogeneityHumanImageImmuneImmunologyImplantIncidenceInfusion proceduresInjectionsInterleukin-4LocationMacrophage Colony-Stimulating FactorMediatingMonitorMusMuscle CellsMyeloid CellsOpticsPacemakersParabiosisPatientsPhenotypePopulationProcessProtocols documentationPublishingRecoveryRecovery of FunctionResearchRoleSamplingSomatotropinSourceSpatial DistributionStainsStromal CellsSystemTechniquesTelemetryTestingTimeTissuesWorkatrioventricular nodebaseclinically relevantexperimental studyimprovedin vivomacrophagemonocytemortalitymultiphoton microscopynoveloptogeneticsprogenitorsingle-cell RNA sequencingtargeted treatmenttranslational goal
项目摘要
Atrioventricular (AV) conduction abnormalities are common and potentially lethal if not treated with a
pacemaker. We recently discovered that macrophages inhabit the mouse and human AV node, and that
depletion of macrophages in the Cd11bDTR mouse leads to complete AV block. In the normal murine AV node,
macrophages electrically couple to conducting cells via connexin 43. This electrotonic coupling creates a
source-sink relationship between macrophages and conducting cardiomyocytes. Genetic interference with
macrophage-myocyte coupling weakened AV conduction while optogenetically enhanced communication
improved AV node function. These data, which we recently published in Cell, establish that resident
macrophages augment the fidelity of AV node conduction. We have continued this work by performing survival
studies after macrophage depletion, finding that all mice with AV block die. In preliminary work for this
application, we adopted an implantable pacemaker system for mice, and were able to pace mice for several
weeks. We here propose to use this technique in Cd11bDTR mice. We will conduct studies to better understand
the function of AV node macrophages in order to advance our long-term translational goal to one day develop
macrophage-targeted therapeutics as a new option for conduction disorders. We will implant pacemakers into
Cd11bDTR mice and pace them for up to three months after macrophage depletion. We will test the hypothesis
that, if the mice are supported with a pacemaker, spontaneous recovery of AV node conduction will occur due
to recovery of tissue macrophages. We will test for AV node recovery by ECG telemetry in conjunction with in
vivo electrophysiological and ex vivo optical mapping studies to provide a comprehensive assessment of AV
node function. After recovery, we will isolate AV nodes to investigate the cellular and structural landscape with
special focus on macrophage numbers, subset heterogeneity and spatial distribution by FACS, single-cell
RNA-sequencing and imaging. Using parabiosis, we will determine whether cardiac macrophages repopulate
from circulating monocytes or from tissue progenitors. We will further test whether enhancing tissue
macrophage numbers will influence AV node recovery. Since AV node macrophages are reduced in mice
lacking macrophage colony stimulating factor (M-CSF), we will treat macrophage-depleted mice with M-CSF to
test the hypothesis that such treatment will increase local proliferation of remaining AV node macrophages, and
thus ushers in recovery of AV node conduction. We will also explore other growth hormones with influence on
myeloid cell replenishment. In a translational aim, we will study macrophages, other non-cardiomyocytes and
structural remodeling processes in human AV nodes obtained from patients with AV block. Our collaborative
application unites an interdisciplinary team with expertise in electrophysiology, immunology and
bioengineering. While the novel research plan is ambitious, we believe that our preliminary data demonstrate
feasibility and provide us with a unique opportunity to study a question with high clinical relevance.
房室 (AV) 传导异常很常见,如果不及时治疗,可能会致命
起搏器。我们最近发现巨噬细胞存在于小鼠和人类房室结中,并且
Cd11bDTR 小鼠巨噬细胞的耗竭导致完全房室传导阻滞。在正常小鼠房室结中,
巨噬细胞通过连接蛋白 43 与传导细胞电耦合。这种电耦合产生了
巨噬细胞和传导心肌细胞之间的源库关系。遗传干扰
巨噬细胞-肌细胞耦合减弱了房室传导,同时光遗传学增强了通讯
改进了房室结功能。我们最近在《细胞》杂志上发表的这些数据表明,居民
巨噬细胞增强房室结传导的保真度。我们通过生存来继续这项工作
巨噬细胞耗竭后的研究发现,所有患有房室传导阻滞的小鼠都会死亡。在这方面的前期工作中
在应用程序中,我们为小鼠采用了植入式起搏器系统,并且能够对小鼠起搏数次
几周。我们在这里建议在 Cd11bDTR 小鼠中使用这种技术。我们将进行研究以更好地了解
房室结巨噬细胞的功能,以推进我们的长期转化目标有朝一日发展
巨噬细胞靶向疗法作为传导障碍的新选择。我们将植入起搏器
Cd11bDTR 小鼠,并在巨噬细胞耗尽后对它们进行长达三个月的步调。我们将检验假设
如果小鼠有起搏器支持,房室结传导会自发恢复,因为
组织巨噬细胞的恢复。我们将通过 ECG 遥测结合测试 AV 节点恢复
体内电生理学和离体光学测绘研究可提供 AV 的全面评估
节点功能。恢复后,我们将隔离 AV 节点,以研究细胞和结构景观
通过 FACS、单细胞特别关注巨噬细胞数量、子集异质性和空间分布
RNA 测序和成像。利用联体共生,我们将确定心脏巨噬细胞是否重新增殖
来自循环单核细胞或来自组织祖细胞。我们将进一步测试是否增强组织
巨噬细胞数量会影响房室结的恢复。由于小鼠房室结巨噬细胞减少
缺乏巨噬细胞集落刺激因子(M-CSF),我们将用 M-CSF 治疗巨噬细胞耗尽的小鼠
检验这样的治疗将增加剩余房室结巨噬细胞的局部增殖的假设,并且
从而迎来房室结传导的恢复。我们还将探索其他影响的生长激素
骨髓细胞补充。在转化目标中,我们将研究巨噬细胞、其他非心肌细胞和
从房室传导阻滞患者获得的人类房室结的结构重塑过程。我们的合作
该应用程序联合了一支跨学科团队,拥有电生理学、免疫学和
生物工程。虽然新的研究计划雄心勃勃,但我们相信我们的初步数据表明
可行性并为我们提供了一个独特的机会来研究具有高度临床相关性的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maarten Hulsmans其他文献
Maarten Hulsmans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maarten Hulsmans', 18)}}的其他基金
Cardiac resident macrophages in AV node conduction
心脏常驻巨噬细胞参与房室结传导
- 批准号:
10532806 - 财政年份:2021
- 资助金额:
$ 76.28万 - 项目类别:
相似国自然基金
内质网应激通过m6A甲基化调控牛卵巢颗粒细胞坏死性凋亡机制研究
- 批准号:32372887
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肿瘤特异性转录本MARCO-TST通过调控AIF核转位抑制细胞凋亡介导HER2阳性乳腺癌治疗耐药的机制研究
- 批准号:82303808
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
酶响应性纳米递药系统通过靶向调控滑膜成纤维细胞凋亡治疗类风湿性关节炎的研究
- 批准号:32301192
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
局灶节段硬化性肾小球肾炎中FSTL3通过DC-SIGN促足细胞凋亡的作用研究
- 批准号:82300796
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
凋亡小体通过ACKR3介导巨噬细胞重编程对狼疮的疗效及机制研究
- 批准号:82302053
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Cardiac resident macrophages in AV node conduction
心脏常驻巨噬细胞参与房室结传导
- 批准号:
10532806 - 财政年份:2021
- 资助金额:
$ 76.28万 - 项目类别:
Synthetic DNA-free Circuits for “Scarless” Programming of Mammalian Cells
用于哺乳动物细胞“无痕”编程的合成无 DNA 电路
- 批准号:
10115864 - 财政年份:2020
- 资助金额:
$ 76.28万 - 项目类别:
Synthetic DNA-free Circuits for “Scarless” Programming of Mammalian Cells
用于哺乳动物细胞“无痕”编程的合成无 DNA 电路
- 批准号:
10379933 - 财政年份:2020
- 资助金额:
$ 76.28万 - 项目类别:
Development and Mechanistic Studies of an Engineered Human Enzyme to Abrogate Immune Suppression due to Elevated Methylthioadenosine (MTA) by MTAP null/low Tumors
一种工程化人类酶的开发和机制研究,用于消除 MTAP 无效/低肿瘤导致的甲硫腺苷 (MTA) 升高引起的免疫抑制
- 批准号:
10661577 - 财政年份:2019
- 资助金额:
$ 76.28万 - 项目类别: