Immune control and genomic instability at micronuclei
微核的免疫控制和基因组不稳定性
基本信息
- 批准号:10365554
- 负责人:
- 金额:$ 50.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnaphaseAutomobile DrivingBiochemicalCell NucleusCell divisionCellsCellular biologyChromatinChromosomal InstabilityChromosome SegregationChromosomesChronicCollaborationsComplexCrowsCytoplasmDNADNA BindingDNA DamageDNA Sequence RearrangementDNA-Binding ProteinsDataDefectDigestionDiseaseDockingElectron Transport Complex IIIEndoplasmic ReticulumEnvironmentEtiologyEvolutionExhibitsFunctional disorderGenesGenomeGenomic DNAGenomic InstabilityGoalsHealthHumanImmuneImmune System DiseasesImmune signalingIncentivesIndividualLaboratoriesLeadLettersMalignant NeoplasmsMembraneMethodsMissense MutationMitosisModelingMolecularMutagenesisMutateMutationN-terminalNuclearNuclear EnvelopePathway interactionsPatternPhasePlayPositioning AttributeProcessPrognosisProteinsProteomicsRecruitment ActivityRoleRuptureSiteSourceStimulator of Interferon GenesStructural Chromosomal AbnormalityStructureTREX1 geneTREX2 geneTestingTherapeuticThree Prime Repair Exonuclease 1TopoisomeraseTumor ImmunityVesicleViralWorkbasecancer genomechromosome missegregationchromothripsisendonucleasegenome integrityimmune activationimmunoregulationimprovedinsightmutation carriernovelpolyprolinepreventprotein protein interactionpseudotoxoplasmosis syndromerecruitrepairedresponsesegregationsensortumor
项目摘要
PROJECT SUMMARY
Chromosomal instability (CIN) is a hallmark of cancer characterized by high rates of chromosome mis-segre-
gation during cell division. CIN can generate nuclear aberrations termed micronuclei when a chromosome or
chromosome fragment lags during anaphase and fails to join the main chromatin mass that will form the prima-
ry nucleus. Micronuclei recruit nuclear envelopes but defects in construction lead to frequent rupturing, loss of
compartmentalization, and an unregulated exchange of proteins and small vesicles with the cytoplasm. Mi-
cronuclear envelope rupturing causes broad dysfunction and is associated with extensive DNA damage and
genomic rearrangements, including clustered mutational phenomena such as chromothripsis and kataegis,
which are commonly observed in cancer genomes. Ruptured micronuclei can also activate the pro-inflammato-
ry cGAS-STING pathway, which plays essential roles in anti-tumor immunity. These observations suggest that
micronuclei may represent key platforms for genome evolution and immune activation in cancer. The mecha-
nisms driving DNA damage and immune activation at micronuclei are poorly understood. The laboratory dis-
covered that the endoplasmic reticulum (ER)-associated exonuclease TREX1, which is mutated in a variety of
human immune diseases including Aicardi-Goutières Syndrome, accumulates at micronuclei upon micronu-
clear envelope rupture where it resects micronuclear DNA and limits cGAS-STING activation. Therefore,
TREX1 occupies central positions in key pathways with diverse roles in human health and disease. Conse-
quently, there is strong rationale to understand mechanisms of TREX1 activity and engagement with cytosolic
DNA. The long-term goals of the laboratory are to determine mechanisms of DNA damage, clustered mutage-
nesis, and immune activation at sites of nuclear envelope rupture. The specific Aims of this proposal are to 1)
Elucidate mechanisms of TREX1 structure and function, 2) Determine how TREX1 is recruited to micronuclei,
and 3) Dissect pathways of micronuclear DNA damage. Each objective is supported by extensive preliminary
data. Aim 1 will focus on a previously uncharacterized region in TREX1, which is essential for its ability to de-
grade cytosolic DNA and inhibit cGAS activation. Aim 2 will build on results showing that TREX1 DNA binding
function is dispensable for its localization to micronuclei, while its association with the ER is essential. Aim 3
will use a new method to purify micronuclei to dissect sources of micronuclear DNA damage. Taken together,
these data will provide fundamental insights into cancer genome evolution, explain how previously uncharac-
terized TREX1 mutations cause Aicardi-Goutières syndrome, and may identify new strategies to improve anti-
tumor immunity.
项目概要
染色体不稳定性(CIN)是癌症的一个标志,其特征是染色体错误分离率高。
当染色体或细胞分裂时,CIN 会产生称为微核的核畸变。
染色体片段在后期滞后并且无法加入将形成初级的主要染色质质量
微核招募核膜,但结构缺陷导致频繁破裂、丢失。
区室化,以及蛋白质和小囊泡与细胞质的不受控制的交换。
核膜破裂会导致广泛的功能障碍,并与广泛的 DNA 损伤和
基因组重排,包括簇状突变现象,例如染色体碎裂和卡塔吉斯,
在癌症基因组中常见的破裂微核也可以激活促炎细胞。
ry cGAS-STING 通路在抗肿瘤免疫中发挥重要作用。
微核可能代表癌症中基因组进化和免疫激活的关键平台。
实验室发现,驱动 DNA 损伤和免疫激活的机制知之甚少。
报道称,内质网 (ER) 相关的核酸外切酶 TREX1 在多种细胞中发生突变
人类免疫疾病,包括 Aicardi-Goutières 综合征,在微核上积累
透明包膜破裂,切除微核 DNA 并限制 cGAS-STING 激活因此,
TREX1 在人类健康和疾病中发挥多种作用的关键通路中占据核心地位。
因此,有充分的理由来理解 TREX1 活性及其与胞质结合的机制。
DNA。实验室的长期目标是确定 DNA 损伤、聚集突变的机制。
nesis 和核膜破裂部位的免疫激活 该提案的具体目标是 1)
阐明 TREX1 结构和功能的机制,2) 确定 TREX1 如何被招募到微核,
3) 剖析微核 DNA 损伤的途径 每个目标都有广泛的初步支持。
目标 1 将重点关注 TREX1 中以前未表征的区域,这对于其去特征化的能力至关重要。
级胞质 DNA 并抑制 cGAS 激活 目标 2 将基于 TREX1 DNA 结合的结果。
其定位于微核的功能是可有可无的,而其与 ER 的关联则是必不可少的。
将使用一种新的方法来纯化微核来剖析微核 DNA 损伤的来源。
这些数据将为癌症基因组进化提供基本见解,解释以前不寻常的现象是如何发生的。
特化的 TREX1 突变会导致 Aicardi-Goutières 综合征,并且可能会确定新的策略来改善抗-
肿瘤免疫。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN MACIEJOWSKI其他文献
JOHN MACIEJOWSKI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN MACIEJOWSKI', 18)}}的其他基金
Immune control and genomic instability at micronuclei
微核的免疫控制和基因组不稳定性
- 批准号:
10544747 - 财政年份:2022
- 资助金额:
$ 50.29万 - 项目类别:
Molecular origins and impact of APOBEC3 mutagenesis in cancer
APOBEC3 突变的分子起源和对癌症的影响
- 批准号:
10693177 - 财政年份:2022
- 资助金额:
$ 50.29万 - 项目类别:
The origins of chromosome rearrangement in the cancer genome
癌症基因组中染色体重排的起源
- 批准号:
9352813 - 财政年份:2016
- 资助金额:
$ 50.29万 - 项目类别:
The origins of chromosome rearrangement in the cancer genome
癌症基因组中染色体重排的起源
- 批准号:
9223946 - 财政年份:2016
- 资助金额:
$ 50.29万 - 项目类别:
相似国自然基金
肾小管上皮细胞外泌体H19促进成纤维细胞激活介导肾脏IRI后期纤维化的机制研究
- 批准号:82302452
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
克拉维酸生物合成后期氧化脱氨与双异构化的机制研究
- 批准号:32300061
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
儿童早期气质对后期社会性发展的影响:人际掌控感的作用机制
- 批准号:32371108
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
大豆开花后期PFP1基因的克隆及功能研究
- 批准号:32301889
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
细胞壁酸性转化酶cwINVs参与花粉发育后期糖代谢途径的机制研究
- 批准号:32300231
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Role of Nuclear Pore-Regulated Mechanisms in Prostate Cancer Aggressiveness
核孔调节机制在前列腺癌侵袭性中的作用
- 批准号:
10532741 - 财政年份:2022
- 资助金额:
$ 50.29万 - 项目类别:
Role of Nuclear Pore-Regulated Mechanisms in Prostate Cancer Aggressiveness
核孔调节机制在前列腺癌侵袭性中的作用
- 批准号:
10558020 - 财政年份:2022
- 资助金额:
$ 50.29万 - 项目类别:
Causes and Consequences of Aneuploidy in HeSCs
HeSC 非整倍体的原因和后果
- 批准号:
10374156 - 财政年份:2020
- 资助金额:
$ 50.29万 - 项目类别:
Causes and Consequences of Aneuploidy in HeSCs
HeSC 非整倍体的原因和后果
- 批准号:
10163228 - 财政年份:2020
- 资助金额:
$ 50.29万 - 项目类别:
Role of Nuclear Pore-Regulated Mechanisms in Prostate Cancer Aggressiveness
核孔调节机制在前列腺癌侵袭性中的作用
- 批准号:
10059202 - 财政年份:2019
- 资助金额:
$ 50.29万 - 项目类别: