Modeling the Coupled Dynamics of COVID-19 Transmission and Protective Behaviors
对 COVID-19 传播和保护行为的耦合动态进行建模
基本信息
- 批准号:10365006
- 负责人:
- 金额:$ 60.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-17 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAdaptive BehaviorsAffectAgeAllyAttitudeBackBehaviorBehavioralBehavioral ModelBeliefBlood CirculationCOVID-19COVID-19 pandemicCessation of lifeCharacteristicsCitiesClinical MedicineCommunicable DiseasesComplexCoupledDataData SetDecision MakingDevelopmentDiseaseEffectivenessEnsureEpidemicEpidemiologyFatigueFundingFutureGeographic stateHealthcare SystemsHeterogeneityImmunityIndividualInfectionInfluenzaInfluenza vaccinationInterventionLongitudinal StudiesLongitudinal SurveysMasksMeasuresMemoryMethodsModelingNational Institute of Allergy and Infectious DiseaseOnline SystemsOutcomePatternPerceptionPeriodicityPoliciesPopulation HeterogeneityPsychologyReactionResearchResourcesRespiratory Signs and SymptomsRespiratory Tract InfectionsRespondentRiskRisk BehaviorsRunningSARS-CoV-2 transmissionSamplingSeasonsShapesSignal TransductionSocial DistanceSocial NetworkSpeedStructureSurveysTestingTranslatingUncertaintyVaccinatedVaccinationVaccinesVariantVirulentVirusVirus DiseasesWorkbasebehavior changebehavioral responsecomparison interventiondecision researchdisease transmissioneconomic outcomeexperiencefallsflu transmissionhealth economicsinsightinteractive toolmachine learning methodmathematical modelmedical supplymodels and simulationnovel vaccinesoutcome forecastpandemic diseasepeerpopulation basedpreventprotective behaviorresponserisk perceptionseasonal influenzasocialsocial mediasocioeconomicstooltransmission processuser-friendlyvaccine accessvaccine effectiveness
项目摘要
Project Summary/Abstract
A growing number of COVID-19 transmission models have been developed to help forecast the on-going epi-
demic and compare outcomes of different non-pharmaceutical interventions (NPIs) in terms of cases, deaths,
and medical supply needs. Most of these models do not include adaptive behavioral effects describing how risk
perceptions and fatigue influence engagement with social distancing and transmission reduction. Decisions on
mask-wearing, levels of social contact, and vaccination will define whether the epidemic is controlled or enters
annual circulation. We propose the development of population-based (PBM) and agent-based (ABM) transmis-
sion models to study the interplay between individual behavior and transmission dynamics, while considering the
many uncertainties which still surround the virus, such as seasonal effects and the loss of immunity. Addition-
ally, our models will be used to study how COVID-19 and seasonal influenza and respective behaviors interact,
exacerbate outcomes, and potentially overwhelm the health care system. These models will build upon our prior
research. Since Fall 2016 we have conducted regular longitudinal surveys investigating attitudes towards, risk
perceptions of, and propensity to vaccinate for seasonal influenza. The ABM models constructed from these data
account for adaption and memory of past experiences, peer effects, and population heterogeneity. Using machine
learning methods, we have augmented a synthetic network representative of a small US city with this behavioral
data. We have continued to conduct modified versions of these surveys to track how these beliefs translate to
COVID-19. In parallel, we have developed a compartmental population-based model of COVID-19, which models
transmission and the effects of NPI intensity and timing on both health and economic outcomes. We propose to
extend our current compartmental PBM and build a new individual-level ABM, informed by longitudinal surveys.
We will conduct a four-year longitudinal panel survey to construct an empirical behavioral model for decisions
to socially distance, engage in transmission reduction measures (such as mask-wearing), and vaccinate. This
information will be combined with our existing synthetic network data-set to enable us to build an individual level
ABM of the spread of COVID-19 in a representative US city, integrated with our influenza ABM. This model will
capture both how individual behaviors impact macro-level disease transmission and how influenza and COVID-19
could interact. Insights and data from our individual-level model will be used to inform and parameterize adaptive
behavior within our compartment-level model, allowing for policy comparisons across a range of US states. In
addition, we will consider which policies are robust to key behavioral and technological uncertainties, such as the
extent of behavior change in response to perceived risk and the timing and effectiveness of vaccines. Finally,
we will develop web-based interactive tools that allow for the exploration and comparison of different policies in a
variety of potential futures.
项目概要/摘要
越来越多的 COVID-19 传播模型已被开发出来,以帮助预测正在发生的疫情
流行病并比较不同非药物干预措施 (NPI) 在病例、死亡、
大多数这些模型不包括描述风险如何发生的适应性行为效应。
看法和疲劳会影响社交距离和减少传播的决策。
戴口罩、社交接触程度和疫苗接种将决定疫情是否得到控制或进入
我们建议发展基于人口(PBM)和基于代理(ABM)的传播。
sion 模型来研究个体行为和传播动态之间的相互作用,同时考虑
该病毒仍然存在许多不确定性,例如季节性影响和免疫力的丧失。
我们的模型将用于研究 COVID-19 和季节性流感以及各自的行为如何相互作用,
这些模型将建立在我们之前的基础上。
自 2016 年秋季以来,我们定期进行纵向调查,调查人们对风险的态度。
根据这些数据构建的 ABM 模型。
考虑过去经历的适应和记忆、同伴效应和群体异质性使用机器。
学习方法,我们用这种行为增强了代表美国小城市的合成网络
我们继续对这些调查进行修改版本,以跟踪这些信念如何转化为数据。
与此同时,我们开发了一个基于群体的 COVID-19 模型,该模型
我们建议:传播以及 NPI 强度和时间对健康和经济结果的影响。
扩展我们当前的分区 PBM,并根据纵向调查建立新的个人级 ABM。
我们将进行为期四年的纵向面板调查,构建决策的实证行为模型
保持社交距离,采取减少传播的措施(例如戴口罩)并接种疫苗。
信息将与我们现有的合成网络数据集相结合,使我们能够构建个人级别
该模型将与我们的流感 ABM 相结合,对美国代表性城市中的 COVID-19 传播进行 ABM。
捕捉个人行为如何影响宏观层面的疾病传播以及流感和 COVID-19 的影响
来自我们个人级模型的见解和数据将用于通知和参数化自适应。
我们的隔间级别模型中的行为,允许在美国一系列州之间进行政策比较。
此外,我们将考虑哪些政策对关键行为和技术不确定性具有稳健性,例如
最后,针对感知风险的行为改变程度以及疫苗的时机和有效性。
我们将开发基于网络的交互式工具,以便在不同的环境中探索和比较不同的政策
各种潜在的未来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Parker其他文献
Andrew Parker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Parker', 18)}}的其他基金
Modeling the Coupled Dynamics of COVID-19 Transmission and Protective Behaviors
对 COVID-19 传播和保护行为的耦合动态进行建模
- 批准号:
10678677 - 财政年份:2021
- 资助金额:
$ 60.58万 - 项目类别:
Modeling the Coupled Dynamics of COVID-19 Transmission and Protective Behaviors
对 COVID-19 传播和保护行为的耦合动态进行建模
- 批准号:
10490886 - 财政年份:2021
- 资助金额:
$ 60.58万 - 项目类别:
Modeling the Coupled Dynamics of Influenza Transmission and Vaccination Behavior
流感传播和疫苗接种行为的耦合动力学建模
- 批准号:
9217563 - 财政年份:2016
- 资助金额:
$ 60.58万 - 项目类别:
相似国自然基金
复杂来流条件下胸鳍推进模式水动力及其适应性行为特性数值研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高温轧制界面无机磷酸盐聚合物润滑剂设计制备及宽温域摩擦学适应性行为
- 批准号:52072380
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
种粮农户应对气候变化的适应性行为研究——基于黄淮海地区数据
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
农业水价综合改革背景下节水效应与粮食生产影响研究——基于不同经营规模农业生产主体适应性行为差异
- 批准号:71973065
- 批准年份:2019
- 资助金额:48 万元
- 项目类别:面上项目
风险感知、情境差距与农户极端气温灾害适应性行为——基于鄱阳湖区种粮大户的调查
- 批准号:71963020
- 批准年份:2019
- 资助金额:28 万元
- 项目类别:地区科学基金项目
相似海外基金
Project 3: The Virtual Human for Precision Nutrition
项目 3:精准营养虚拟人
- 批准号:
10552681 - 财政年份:2022
- 资助金额:
$ 60.58万 - 项目类别:
Project 3: The Virtual Human for Precision Nutrition
项目 3:精准营养虚拟人
- 批准号:
10386501 - 财政年份:2022
- 资助金额:
$ 60.58万 - 项目类别:
Modeling the Coupled Dynamics of COVID-19 Transmission and Protective Behaviors
对 COVID-19 传播和保护行为的耦合动态进行建模
- 批准号:
10678677 - 财政年份:2021
- 资助金额:
$ 60.58万 - 项目类别:
Modeling the Coupled Dynamics of COVID-19 Transmission and Protective Behaviors
对 COVID-19 传播和保护行为的耦合动态进行建模
- 批准号:
10490886 - 财政年份:2021
- 资助金额:
$ 60.58万 - 项目类别:
Cognitive Outcome Measures in School Age Children with Down Syndrome
学龄唐氏综合症儿童的认知结果测量
- 批准号:
10453735 - 财政年份:2018
- 资助金额:
$ 60.58万 - 项目类别: