Theory and SImulation of Viral Replication
病毒复制理论与模拟
基本信息
- 批准号:10349805
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVACE2AdoptedArginineAwardBehaviorBindingBiological ProcessBiophysical ProcessBiophysicsCOVID-19CapsidCellsCellular biologyChargeChemicalsCollaborationsComplexComputer SimulationCryo-electron tomographyCrystallizationDataDevelopmentDiseaseElementsEventExtracellular SpaceFullerenesGenetic MaterialsGoalsGrainHIVHIV InfectionsHeterogeneityHybridsImageImmuneInfectious AgentInnate Immune ResponseKineticsKnowledgeLengthLettersLife Cycle StagesLinkMacaca mulattaMechanical StressMechanicsMethodologyMethodsModelingMolecularMolecular ConformationMorphologyNucleotidesOrganismPatternPeptide HydrolasesPeptidesPhasePhysicsPhytic AcidPlayPolyproteinsProcessPropertyProtein ConformationProteinsResearchReverse TranscriptionRoentgen RaysRoleRuptureSARS-CoV-2 transmissionSamplingSeriesSignal TransductionStatistical Data InterpretationStructural BiologistStructureSurfaceSystemTRIM MotifTertiary Protein StructureTestingTimeTranscription ProcessUnited States National Institutes of HealthViralViral GenomeVirionVirusVirus DiseasesVirus ReplicationWorkbasecareercombatdimergag Gene Productsinhibitor therapyinsightmodels and simulationmolecular dynamicsmolecular mechanicsmolecular modelingmolecular scalenovel therapeutic interventionpandemic diseaseparticlephysical propertyquantumquantum chemistryreceptorreceptor bindingself assemblysensorsimulationsmall moleculestructural biologytheoriestraffickingvirologyvirus genetics
项目摘要
PROJECT SUMMARY
Viruses are infectious agents that replicate inside the living cells of an organism, and it remains critical to
understand the basic molecular mechanisms that govern viral replication, as they perform numerous complex
physical and chemical processes ranging from atomic-scale phenomena, such as the quantum chemistry of
bond cleavage to large-scale processes, such as protein self-assembly. These processes are fundamentally
multiscale since they span time and length scales from the molecular to the mesoscopic. For instance, during
viral particle maturation, proteolytic cleavage of the group-specific antigen polyprotein (Gag) releases capsid
domain proteins (CA) that subsequently reassemble into a fullerene capsid. Our overarching goal is to study
the molecular processes involved in viral replication using theory, physics-based modeling, and computer
simulations.
This proposal focuses on five key aspects of the viral life cycle: (1) how innate immune sensors like the
tripartite motif containing protein 5 α (TRIM5α) restrict viral infection by assembling into hexagonally-patterned
lattices to physically cage the viral core and signal the capsid for degradation, (2) the material and physical
properties of the capsid shell that encases and protects the viral genome, (3) the chemical features of pH-
gated pores distributed throughout the capsid surface, (4) the large-scale morphological changes that occur
during virion maturation, and (5) the conformational dynamics of spike proteins in SARS-CoV-2 virion fusion.
Our strategy is to develop multiscale simulation methods to link molecular behavior at one length-scale to the
next. Coarse-grained (CG) methods and reduced representation models will be developed that retain the
essential physics of the biological process and are also computationally efficient to simulate large-scale viral
processes. All-atom (AA) simulations will be used to accurately probe protein conformational dynamics. Bond
cleavage and formation will be described using mixed quantum-classical approaches, e.g., quantum
mechanical/molecular mechanics (QM/MM) calculations. These simulations will serve as the basis for
developing reactive CG models based on hybrid kinetic Monte Carlo molecular dynamics (MC/MD) to link
quantum phenomena to the CG scale.
Computational predictions on viral replication will be tested and validated in collaboration with leading
structural biologists and biochemists. Collectively, insights from these studies will broadly impact the fields of
molecular simulation, virology, and computational biophysics. Findings from these studies have the potential to
aid in the development of new therapeutic strategies to combat viral infection.
项目概要
病毒是在生物体活细胞内复制的感染因子,它对于生物体的活细胞内复制仍然至关重要。
了解控制病毒复制的基本分子机制,因为它们执行许多复杂的操作
从原子尺度现象的物理和化学过程,例如量子化学
键断裂到大规模过程,例如蛋白质自组装,这些过程从根本上来说都是如此。
多尺度,因为它们跨越从分子到介观的时间和长度尺度。
病毒颗粒成熟,组特异性抗原多蛋白 (Gag) 的蛋白水解裂解释放衣壳
随后重新组装成富勒烯衣壳的结构域蛋白 (CA) 我们的首要目标是研究。
使用理论、基于物理的建模和计算机来研究病毒复制中涉及的分子过程
模拟。
该提案重点关注病毒生命周期的五个关键方面:(1)先天免疫传感器如何像
含有蛋白 5 α (TRIM5α) 的三联基序通过组装成六边形图案来限制病毒感染
晶格以物理方式笼罩病毒核心并向衣壳发出降解信号,(2)材料和物理
包裹和保护病毒基因组的衣壳的特性,(3) pH-的化学特征
门控孔分布在整个衣壳表面,(4)发生大规模的形态变化
病毒体成熟过程中的变化,以及 (5) SARS-CoV-2 病毒体融合中刺突蛋白的构象动力学。
我们的策略是开发多尺度模拟方法,将某一长度尺度的分子行为与
接下来将开发保留的粗粒度(CG)方法和简化表示模型。
生物过程的基本物理原理,并且计算效率也高,可以模拟大规模病毒
全原子(AA)模拟将用于精确探测蛋白质构象动力学。
将使用混合量子经典方法来描述裂解和形成,例如量子
这些模拟将作为机械/分子力学(QM/MM)计算的基础。
开发基于混合动力学蒙特卡罗分子动力学 (MC/MD) 的反应 CG 模型以链接
CG 尺度的量子现象。
关于病毒复制的计算预测将与领先的公司合作进行测试和验证
总的来说,这些研究的见解将广泛影响结构生物学家和生物化学家的领域。
这些研究的结果有可能促进分子模拟、病毒学和计算生物物理学的发展。
帮助开发新的治疗策略来对抗病毒感染。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alvin Yu其他文献
Alvin Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alvin Yu', 18)}}的其他基金
Computational and Theoretical Studies of Retroviral Replication - Resubmission
逆转录病毒复制的计算和理论研究 - 重新提交
- 批准号:
9910613 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Computational and Theoretical Studies of Retroviral Replication - Resubmission
逆转录病毒复制的计算和理论研究 - 重新提交
- 批准号:
10341163 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
相似国自然基金
人类ACE2变构抑制剂的成药性及其抗广谱冠状病毒感染的机制研究
- 批准号:82330111
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
刺参自溶引发机制中ACE2调控靶点的调控网络研究
- 批准号:32372399
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
新型蝙蝠MERS簇冠状病毒HKU5的ACE2受体识别及细胞入侵机制研究
- 批准号:32300137
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于AT2/ACE2/Ang(1-7)/MAS轴调控心脏-血管-血液系统性重构演变规律研究心衰气虚血瘀证及其益气通脉活血化瘀治法生物学基础
- 批准号:82305216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于外泌体miRNAs介导细胞通讯的大豆ACE2激活肽调控血管稳态机制研究
- 批准号:32302080
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Lipid Bilayer Remodeling and Protein Intermediates During Membrane Fusion
膜融合过程中的脂质双层重塑和蛋白质中间体
- 批准号:
10670375 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Small Molecule Inhibitors Against 3C-Like Protease of SARS-CoV-2
针对 SARS-CoV-2 3C 样蛋白酶的小分子抑制剂
- 批准号:
10238615 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Metabolic and epigenetic reprogramming of vital organs in SARS-CoV-2 induced systemic toxicity
SARS-CoV-2 引起的全身毒性中重要器官的代谢和表观遗传重编程
- 批准号:
10846284 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Metabolic and epigenetic reprogramming of vital organs in SARS-CoV-2 induced systemic toxicity
SARS-CoV-2 引起的全身毒性中重要器官的代谢和表观遗传重编程
- 批准号:
10272660 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别: