Molecular basis of adenosine transport and reuptake inhibition in human
人体腺苷转运和再摄取抑制的分子基础
基本信息
- 批准号:10338157
- 负责人:
- 金额:$ 40.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdenosineAgonistAntihypertensive AgentsBindingBiochemicalBiological AssayBiological ModelsBiologyBloodCardiacCell membraneCellsCellular MembraneChemicalsClinicClinicalClinical effectivenessComplexCytosolDataDevelopmentDipyridamoleEngineeringEquilibrative Nucleoside Transporter 1EquilibriumExhibitsFDA approvedFutureG-Protein-Coupled ReceptorsGoalsHalf-LifeHeartHeart DiseasesHeart TransplantationHumanHybridsHypoxiaInfarctionInterventionIntravenousKidneyKidney DiseasesKidney TransplantationKnowledgeLeadLungLung TransplantationLung diseasesMediatingMembraneMembrane Transport ProteinsModelingMolecularMolecular ConformationMutagenesisMyocardial IschemiaNucleoside TransporterNucleosidesOrgan TransplantationOrgan failureOutcomePatientsPharmacologyPropertyProtein IsoformsPurine NucleosidesPurinergic P1 ReceptorsRefractoryRenal TissueReperfusion InjuryReperfusion TherapyResearchSeriesSignal TransductionSpecificityStructureSubstrate SpecificityTherapeuticTherapeutic InterventionThioinosineTissuesToxic effectVariantWorkadenosine receptor activationadenosine transporteranalogbasecardioprotectionclinically relevantcombatdesignexperienceexperimental studyextracellularimprovedinhibitorinterestnovelnucleoside analogorgan transplant rejectionpharmacophorepreventprotective effectrational designresponserestorationreuptakeside effectsurvival outcometherapeutic targettransplantation therapyvasoactive agent
项目摘要
Ischemia-reperfusion (IR) injury is a phenomenon in which hypoxic tissue undergoes prolonged damage after
the return of oxygenated blood, proving a prevalent clinical challenge faced in organ transplant, and ischemic
heart, lung and kidney diseases. Ultimately, IR injury can lead to increased infarct size, organ rejection and organ
failure. The purine nucleoside adenosine is produced extracellularly in response to IR injury, and elicits
cardioprotective, pulmonary protective and renal protective effects through agonizing adenosine G-protein
coupled receptors. However, the half-life of extracellular adenosine is extremely short-lived, as specialized
integral membrane transport proteins mediate the rapid membrane permeation of adenosine, where the
nucleoside is ultimately metabolized within the cytosol. Human equilibrative nucleoside transporters (hENTs) are
the main cellular adenosine transporters. Furthermore, adenosine reuptake inhibitors (AdoRIs), a chemically
diverse class of hENT inhibitors, potentiate extracellular adenosine signaling by preventing its rapid reuptake
through hENTs. Therefore, select AdoRIs are clinically used as vasoactive agents in the treatment of cardiopathy
and renal disorders. However, current AdoRIs are limited in their clinical effectiveness due to their poor
pharmacological properties and toxicities. Efforts to improve current AdoRIs or develop novel AdoRIs has been
challenged by the lack of atomic-level information on hENTs and the mechanism of AdoRIs. This proposed
research seeks to address this gap in knowledge by employing molecular, cellular, and chemical approaches to
interrogate features of adenosine reuptake inhibition, adenosine recognition and the transport mechanism
exhibited by hENTs. Notably, the rational design of novel adenosine reuptake inhibitors displaying improved
subtype specificity will be pursued using cardiac and renal model systems. This work will uncover the molecular
features of AdoRI activity, adenosine recognition, along with the transport mechanism exhibited by hENTs. In
total, successful completion of this work will provide the framework for improved pharmacological intervention of
adenosine biology, which will have far-reaching implications in the treatment of ischemic heart, lung, and kidney
disease.
缺血再灌注(IR)损伤是缺氧组织在缺血后遭受长期损伤的现象。
含氧血液的返回,证明器官移植和缺血性面临的普遍临床挑战
心脏、肺和肾脏疾病。最终,IR损伤可导致梗塞面积增加、器官排斥和器官损伤。
失败。嘌呤核苷腺苷是响应 IR 损伤而在细胞外产生的,并引发
通过激动腺苷 G 蛋白发挥心脏保护、肺保护和肾保护作用
偶联受体。然而,细胞外腺苷的半衰期极其短暂,因为专门
整合膜转运蛋白介导腺苷的快速膜渗透,其中
核苷最终在细胞质内代谢。人类平衡核苷转运蛋白 (hENT) 是
主要的细胞腺苷转运蛋白。此外,腺苷再摄取抑制剂(AdoRIs)是一种化学
不同类别的 hENT 抑制剂,通过阻止其快速再摄取来增强细胞外腺苷信号传导
通过 hENT。因此,临床上选择AdoRIs作为血管活性药物治疗心脏病
和肾脏疾病。然而,目前的 AdoRIs 由于其效果较差,其临床效果有限。
药理特性和毒性。改进现有 AdoRI 或开发新型 AdoRI 的努力一直在
由于缺乏有关 hENT 和 AdoRI 机制的原子级信息而面临挑战。这个提议
研究旨在通过采用分子、细胞和化学方法来解决这一知识差距
探究腺苷再摄取抑制、腺苷识别和转运机制的特征
hENTs 展出。值得注意的是,新型腺苷再摄取抑制剂的合理设计显示出改进的
将使用心脏和肾脏模型系统来追求亚型特异性。这项工作将揭示分子
AdoRI 活性特征、腺苷识别以及 hENTs 表现出的转运机制。在
总体而言,这项工作的成功完成将为改善药物干预提供框架
腺苷生物学,这将对缺血性心、肺和肾的治疗产生深远的影响
疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiyong Hong其他文献
Jiyong Hong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiyong Hong', 18)}}的其他基金
Molecular basis of adenosine transport and reuptake inhibition in human
人体腺苷转运和再摄取抑制的分子基础
- 批准号:
10384262 - 财政年份:2020
- 资助金额:
$ 40.66万 - 项目类别:
Molecular basis of adenosine transport and reuptake inhibition in human
人体腺苷转运和再摄取抑制的分子基础
- 批准号:
10549779 - 财政年份:2020
- 资助金额:
$ 40.66万 - 项目类别:
Study of Subglutinol A as a Potential Immunomodulatory Agent
Subglutinol A 作为潜在免疫调节剂的研究
- 批准号:
9226543 - 财政年份:2016
- 资助金额:
$ 40.66万 - 项目类别:
Targeting Rev1-mediated Translesion Synthesis for Cancer Therapy
靶向 Rev1 介导的跨损伤合成用于癌症治疗
- 批准号:
9099802 - 财政年份:2015
- 资助金额:
$ 40.66万 - 项目类别:
相似国自然基金
腺苷酸转位酶在SARS-CoV-2感染中的作用及分子机制研究
- 批准号:32302955
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向RNA腺苷脱氨酶(ADAR1)的抑制剂发现与抗肿瘤活性研究
- 批准号:82304379
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
去腺苷酸化酶CNOT6L抑制结肠炎癌转化中CD8+T细胞功能的分子机制及其靶标属性探讨
- 批准号:82304557
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GelMA水凝胶负载腺苷经破骨细胞MAPK/AP1信号轴促进骨质疏松性颌骨缺损修复的研究
- 批准号:82301041
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
内含子多聚腺苷酸化介导的肿瘤易感基因的识别及调控模式研究
- 批准号:32370721
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Spherical Nucleic Acid nano-architectures as first-in-class cGAS agonists for the immunotherapeutic treatment of Glioblastoma.
球形核酸纳米结构作为一流的 cGAS 激动剂,用于胶质母细胞瘤的免疫治疗。
- 批准号:
10539146 - 财政年份:2022
- 资助金额:
$ 40.66万 - 项目类别:
Mechanisms of Somatostatin-Mediated Inhibition of Insulin and Glucagon
生长抑素介导的胰岛素和胰高血糖素抑制机制
- 批准号:
10537377 - 财政年份:2022
- 资助金额:
$ 40.66万 - 项目类别:
Modulating retinal lipid biogenesis in diabetes for therapeutic effects
调节糖尿病视网膜脂质生物合成以获得治疗效果
- 批准号:
10503919 - 财政年份:2022
- 资助金额:
$ 40.66万 - 项目类别:
TBI-induced adenosinergic dysregulation causes cognitive impairment and accelerates Alzheimer's disease pathology
TBI 诱导的腺苷能失调导致认知障碍并加速阿尔茨海默病病理
- 批准号:
10464395 - 财政年份:2022
- 资助金额:
$ 40.66万 - 项目类别:
Modulating retinal lipid biogenesis in diabetes for therapeutic effects
调节糖尿病视网膜脂质生物合成以获得治疗效果
- 批准号:
10672366 - 财政年份:2022
- 资助金额:
$ 40.66万 - 项目类别: