Fluorescent nucleosides, nucleotides and oligonucleotides
荧光核苷、核苷酸和寡核苷酸
基本信息
- 批准号:10331021
- 负责人:
- 金额:$ 39.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:Automobile DrivingBasic ScienceBiochemicalBiological ProcessCircular DichroismCommunitiesDNADevelopmentDiseaseEnzymatic BiochemistryEnzymesEventFamilyFluorescenceFutureGoalsHealthHumanImageLaboratoriesMembraneMetabolismMethodsModernizationMonitorNatureNucleic AcidsNucleosidesNucleotidesOligonucleotidesOrganellesPeptidyltransferasePhasePlayProcessRNAResearch PersonnelResolutionRoleScreening procedureSignal TransductionSpectrum AnalysisStructureTechniquesTimebasebiophysical techniquescofactordesigndiagnostic tooldrug discoveryexperimental studyhigh throughput screeningimprovedinnovationmRNA Decaymultiphoton imagingnucleobasenucleoside analognucleotide analogprogramssingle moleculetv watching
项目摘要
PROJECT SUMMARY
Nucleic acids and their building blocks play central roles in all cellular events and, as such, have immense
impact on the emergence of diseases and, in turn, on human health. Studying such events is complicated by
the non-emissive nature of the natural nucleobases, which frequently deprives researchers from the use of
modern fluorescence-based techniques. Faithful minimally perturbing emissive nucleoside surrogates can thus
facilitate the monitoring of nucleoside, nucleotides and nucleic acids-based transformations at nucleoside/tide-
“resolution”, and advance basic research, diagnostic tools and drug discovery efforts.
The goal of the proposed program is to design and synthesize new isomorphic emissive nucleoside and
nucleotide analogs and implement them as probes for monitoring nucleoside- and nucleotide-based
transformations as well as nucleic acids function, structure, dynamics and recognition. Specifically, major
contemporary challenges will be tackled in an attempt to bridge major gaps, among them: (a) Powerful
biophysical techniques, such as Fluorescence-Detected Circular Dichroism (FDCD), introduced nearly five
decades ago, remains practically unexplored; (b) Multiphoton, imaging and single molecule spectroscopy-
based experiments, using native or minimally perturbed oligonucleotides or nucleotide cofactors, are severely
underutilized; (c) Similarly, single molecule enzymology of nucleoside/tide processing enzymes has not
advanced; (d) Probes for real time exploration of fundamental processes such as peptidyl transferase, phase
separated membrane-less organelle formation and mRNA decay are lacking; (e) Nucleoside/tide-based
metabolic processes and nucleotide-based signaling events cannot be directly monitored; and (f) High
throughput screening for nucleosides and nucleosides processing enzymes cannot be performed in real-time
and in a high throughput manner without the use of faithful emissive surrogate substrates.
Capitalizing on several useful families of emissive nucleoside surrogates developed in our laboratory, we
will further refine our “designer” emissive and isomorphic nucleosides/tides and apply them to advance
solutions to the challenges articulated above. We will pursue the advancement of new physical and
biochemical methods, as well as effective real-time screening and diagnostic tools. These efforts will expand
the community's arsenal of emissive functional probes, driving future strides into discovery and imaging
applications. These innovations, in turn, will further fundamental understanding of key biological processes
related to disease development and will have long-term impact on improving human health.
项目概要
核酸及其构建模块在所有细胞事件中发挥着核心作用,因此具有巨大的作用。
对疾病的出现以及对人类健康的影响的研究变得复杂。
天然核碱基的非发射性质,这常常使研究人员无法使用
因此,基于现代荧光的技术可以实现忠实的最小扰动发射核苷替代物。
促进在核苷/潮汐条件下监测核苷、核苷酸和核酸的转化
“决议”,并推进基础研究、诊断工具和药物发现工作。
该计划的目标是设计和合成新的同构发射核苷和
核苷酸类似物并将其作为探针用于监测基于核苷和核苷酸的
具体来说,主要是转化以及核酸的功能、结构、动力学和识别。
将解决当代的挑战,试图弥合重大差距,其中包括: (a) 强有力的
生物物理技术,例如荧光检测圆二色性(FDCD),引入了近五种
几十年前,实际上仍未得到探索;(b) 多光子、成像和单分子光谱学——
使用天然或最小干扰的寡核苷酸或核苷酸辅因子的基于实验,严重
(c) 类似地,核苷/潮汐加工酶的单分子酶学还没有
(d) 实时探索肽基转移酶、相等基本过程的探针
缺乏分离的无膜细胞器形成和 mRNA 衰变; (e) 基于核苷/潮汐;
代谢过程和基于核苷酸的信号传导事件无法直接监测;以及 (f) 高;
无法实时进行核苷和核苷加工酶的通量筛选
并以高通量方式进行,无需使用忠实的发射替代基板。
利用我们实验室开发的几个有用的发射核苷替代物家族,我们
将进一步完善我们的“设计师”发射和同构核苷/潮汐并将其应用于推进
我们将追求新的物理和技术的进步。
生化方法以及有效的实时筛查和诊断工具将得到扩展。
社区的发射功能探针库,推动未来在发现和成像方面的进步
这些创新反过来将进一步加深对关键生物过程的基本理解。
与疾病的发展相关,将对改善人类健康产生长期影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YITZHAK TOR其他文献
YITZHAK TOR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YITZHAK TOR', 18)}}的其他基金
Fluorescent nucleosides, nucleotides and oligonucleotides
荧光核苷、核苷酸和寡核苷酸
- 批准号:
10083552 - 财政年份:2021
- 资助金额:
$ 39.5万 - 项目类别:
Fluorescent nucleosides, nucleotides and oligonucleotides
荧光核苷、核苷酸和寡核苷酸
- 批准号:
10557107 - 财政年份:2021
- 资助金额:
$ 39.5万 - 项目类别:
相似国自然基金
先进航空发动机中超临界态煤油燃烧过程中的基础科学问题研究
- 批准号:52336006
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
极端高温环境流动沸腾技术的基础科学问题及关键材料研究
- 批准号:52333015
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
含氮杂环配体聚合物结构精准调控与功能涂层材料表界面基础科学问题研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
耐高温高电压SiC功率器件灌封材料的多性能协同中的基础科学问题研究
- 批准号:52272001
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
轻量化低脉动高可靠直驱式永磁电机系统基础科学问题与关键技术研究
- 批准号:52237002
- 批准年份:2022
- 资助金额:269 万元
- 项目类别:重点项目
相似海外基金
Alcohol Metabolism Disrupts Hepatic Thiol Redox Signaling and Control
酒精代谢破坏肝脏硫醇氧化还原信号和控制
- 批准号:
10585786 - 财政年份:2023
- 资助金额:
$ 39.5万 - 项目类别:
Cell membrane-targeting proteoglycan chimeras as selective growth factor signaling actuators
作为选择性生长因子信号传导执行器的细胞膜靶向蛋白聚糖嵌合体
- 批准号:
10588085 - 财政年份:2023
- 资助金额:
$ 39.5万 - 项目类别:
The GCE4All Center: Unleashing the Potential of Genetic Code Expansion for Biomedical Research
GCE4All 中心:释放遗传密码扩展在生物医学研究中的潜力
- 批准号:
10558725 - 财政年份:2022
- 资助金额:
$ 39.5万 - 项目类别:
Center for Advanced Multi-Omic Characterization of Cancer
癌症高级多组学表征中心
- 批准号:
10439370 - 财政年份:2022
- 资助金额:
$ 39.5万 - 项目类别: