Disordered Proteins and Dynamic Interactions in Biology and Diseases.
生物学和疾病中的无序蛋白质和动态相互作用。
基本信息
- 批准号:10330292
- 负责人:
- 金额:$ 37.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAntineoplastic AgentsAreaBiologicalBiologyBiomedical ResearchCellsCollaborationsComplexComputing MethodologiesDecision MakingDiabetes MellitusDiseaseEpigallocatechin GallateFamilyFeedbackGoalsHeart DiseasesHumanImmuneLengthMalignant NeoplasmsMeasurementMediatingMethodologyMethodsMolecularMolecular ChaperonesMolecular ConformationMutationNamesNatural ImmunityNeurodegenerative DisordersPeptide HydrolasesPeroxidasesPharmaceutical PreparationsPhosphorylationPlayPrevalenceProcessPropertyProteinsResearchRoleSignal TransductionStaphylococcus aureusStructureSystemTP53 geneTestingTherapeuticTimeTransactivationVirulencehuman diseaseinsightmethod developmentmodels and simulationmolecular modelingnovelprotein aggregationprotein foldingprotein functionprotein misfoldingprotein protein interactionprotein structure functionsimulationvirtual
项目摘要
Project Summary/Abstract
Recent recognition of the prevalence of intrinsically disordered proteins (IDPs) in biology and human diseases
has challenged the traditional paradigm that stable structure is required for protein function. Furthermore, many
IDPs have been found to remain disordered even in specific complexes and functional assemblies. These
discoveries have now dramatically expanded the meaning of “structure” in the protein structure-function
paradigm, to include a continuum from disordered ensembles to well-defined conformations. Importantly, these
disordered proteins and dynamic interactions are central components of the regulatory networks that dictate
virtually all aspects of cell decision-making. They are associated with a growing number of human diseases
including cancers, neurodegenerative diseases, diabetes and heart diseases. There is thus a crucial need to
establish the molecular basis of how conformational disorder mediates protein function, so as to understand how
these functional mechanisms may be perturbed in diseases, or rescued by drug molecules for therapeutics. The
key challenge towards achieving these overarching goals is quantitative description of the disordered protein
states in relevant biological and disease contexts. Experimental measurements of averaged structural properties
alone are inadequate to define the disordered protein ensemble, and reliable molecular simulations have a
crucial and transformative role to play. This project aims to continue to develop advanced molecular modeling
and simulation methodologies that can provide accurate description of disordered protein states, expand the
accessible time and length scales, and enhance our ability to embrace critical questions in molecular level
biomedical research. Through strategically chosen experimental collaborations, this project will further tackle
questions and problems centered around several systems of great biomedical significance: 1) To establish the
sequence-structure-function-disease relationship of IDPs, we will determine how multisite phosphorylation and
cancer-associated mutations modulate the structure, dynamics and interactions of the transactivation domain
(TAD) of tumor suppressor p53; 2) To develop effective strategies for targeting disordered protein states, we
will determine the molecular basis of how the anti-cancer drug EGCG inhibits p53-TAD through dynamic
interactions and study the functional dynamics and inhibition of flaviviral proteases; 3) To understand dynamic
protein-protein interactions in relevant contexts, we will determine the molecular basis of how molecular
chaperone Hsp70 achieves selective promiscuity to help the cell cope with protein folding challenge and how a
novel family of virulence protein named SPIN from S. aureus inhibits human myeloperoxidase for evading the
host innate immune defense. Integrated computational and experimental approaches deployed throughout these
studies will enable us to direct our computational method development efforts to critical areas for which advances
are needed, while at the same time push and test our methods with tangible feedback.
1
项目概要/摘要
最近认识到本质无序蛋白 (IDP) 在生物学和人类疾病中的普遍存在
挑战了蛋白质功能需要稳定结构的传统范式。
研究发现,即使在特定的复合物和功能组件中,IDP 仍保持无序状态。
现在的发现极大地扩展了蛋白质结构-功能中“结构”的含义
范式,包括从无序集合到明确定义的构象的连续体。
无序蛋白质和动态相互作用是决定的调控网络的核心组成部分
事实上,细胞决策的所有方面都与越来越多的人类疾病有关。
包括癌症、神经退行性疾病、糖尿病和心脏病,因此迫切需要。
建立构象紊乱如何介导蛋白质功能的分子基础,从而了解如何
这些功能机制可能在疾病中受到干扰,或者被用于治疗的药物分子拯救。
实现这些总体目标的关键挑战是对无序蛋白质的定量描述
平均结构特性的实验测量。
单独的方法不足以定义无序的蛋白质整体,可靠的分子模拟具有
该项目旨在继续开发先进的分子模型。
和模拟方法,可以提供无序蛋白质状态的准确描述,扩展
可访问的时间和长度尺度,并增强我们在分子水平上接受关键问题的能力
通过战略性选择的实验合作,该项目将进一步解决生物医学研究问题。
围绕几个具有重大生物医学意义的系统的疑问和问题:1)建立
IDP 的序列-结构-功能-疾病关系,我们将确定多位点磷酸化和
癌症相关突变调节反式激活结构域的结构、动力学和相互作用
(TAD) 肿瘤抑制因子 p53;2) 为了开发针对无序蛋白质状态的有效策略,我们
将确定抗癌药物EGCG如何通过动态抑制p53-TAD的分子基础
相互作用并研究黄病毒蛋白酶的功能动态和抑制 3) 了解动态;
在相关背景下蛋白质-蛋白质相互作用,我们将确定分子如何相互作用的分子基础
分子伴侣 Hsp70 实现选择性混杂,帮助细胞应对蛋白质折叠挑战以及如何
来自金黄色葡萄球菌的名为 SPIN 的新型毒力蛋白家族抑制人髓过氧化物酶以逃避
宿主先天免疫防御在这些过程中部署了综合计算和实验方法。
研究将使我们能够将我们的计算方法开发工作引导到取得进展的关键领域
需要,同时通过切实的反馈来推动和测试我们的方法。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianhan Chen其他文献
Jianhan Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianhan Chen', 18)}}的其他基金
Disordered Proteins and Dynamic Interactions in Biology and Diseases.
生物学和疾病中的无序蛋白质和动态相互作用。
- 批准号:
10573331 - 财政年份:2022
- 资助金额:
$ 37.98万 - 项目类别:
Multi-scale enhanced sampling of disordered proteins
无序蛋白质的多尺度增强采样
- 批准号:
9485621 - 财政年份:2016
- 资助金额:
$ 37.98万 - 项目类别:
Multi-scale enhanced sampling of disordered proteins
无序蛋白质的多尺度增强采样
- 批准号:
9379858 - 财政年份:2016
- 资助金额:
$ 37.98万 - 项目类别:
SIMULATION OF SPONTANEOUS PEPTIDE INSERTION AND ASSEMBLY IN EPITHELIAL MEMBRANES
上皮膜中自发肽插入和组装的模拟
- 批准号:
8167832 - 财政年份:2010
- 资助金额:
$ 37.98万 - 项目类别:
SIMULATION OF SPONTANEOUS PEPTIDE INSERTION AND ASSEMBLY IN EPITHELIAL MEMBRANES
上皮膜中自发肽插入和组装的模拟
- 批准号:
7959802 - 财政年份:2009
- 资助金额:
$ 37.98万 - 项目类别:
相似国自然基金
基于化学蛋白质组学的紫草素增强化疗药抗肿瘤作用靶标研究
- 批准号:82373749
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
共载肿瘤RNA/金银花多糖的外泌体仿生递药系统构建及其归巢于犬乳腺肿瘤微环境的抗肿瘤免疫机理
- 批准号:32373056
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
荷载鞭毛蛋白的载药囊泡激发中性粒细胞抗肿瘤效应及其机制研究
- 批准号:82303724
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
溶酶体靶向聚集性无药抗肿瘤纳米颗粒的研究
- 批准号:52303170
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
光笼型Mcl-1抑制剂前药的构建与光活化靶向抗肿瘤作用研究
- 批准号:82304305
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Hypoxia-activated probiotic agents for breast cancer
用于乳腺癌的缺氧激活益生菌制剂
- 批准号:
10660233 - 财政年份:2023
- 资助金额:
$ 37.98万 - 项目类别:
Augmenting Pharmacogenetics with Multi-Omics Data and Techniques to Predict Adverse Drug Reactions to NSAIDs
利用多组学数据和技术增强药物遗传学,预测 NSAID 的药物不良反应
- 批准号:
10748642 - 财政年份:2023
- 资助金额:
$ 37.98万 - 项目类别:
Impact of Obesity on Chemotherapy-Induced Cytotoxicity: Immune Cells and Skeletal Muscle
肥胖对化疗引起的细胞毒性的影响:免疫细胞和骨骼肌
- 批准号:
10572695 - 财政年份:2023
- 资助金额:
$ 37.98万 - 项目类别:
Self-Assembling Camptothecin Nanofiber Hydrogels as Adjunct Therapy for Intraoperative Treatment of Malignant Glioma
自组装喜树碱纳米纤维水凝胶作为恶性胶质瘤术中治疗的辅助疗法
- 批准号:
10738545 - 财政年份:2023
- 资助金额:
$ 37.98万 - 项目类别: