A Human-Mimetic AI System for Automatic, Passive and Objective Dietary Assessment
用于自动、被动和客观饮食评估的仿人人工智能系统
基本信息
- 批准号:10320465
- 负责人:
- 金额:$ 65.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAdultAffectAlgorithmsAmericanArtificial IntelligenceBiomedical EngineeringBiomimeticsCardiovascular DiseasesCellular PhoneCenters for Disease Control and Prevention (U.S.)Cessation of lifeChestChildChronic DiseaseComplexConsumptionCountryDataDatabasesDeveloped CountriesDevicesDiabetes MellitusDietDietary AssessmentDietary intakeDieteticsDimensionsEatingEvaluationExpert SystemsEyeFeedbackFoodFood EnergyFutureGoalsGoldHabitsHealthHealth care facilityHealthcareHeart DiseasesHumanImageIndividualIntakeLabelLifeLife ExpectancyLife StyleLinkMalignant NeoplasmsManualsModelingNutrientNutritionalNutritional ScienceObesityOutputParticipantPatient Self-ReportPerformancePersonsPlayPrivacyProblem SolvingProcessPublic HealthRecordsReportingResearchResearch PersonnelRiskRisk FactorsRoleShapesSignal TransductionSystemTechnologyTrainingUnhealthy DietUpdateVolitionartificial intelligence algorithmbaseburden of illnesscancer typecomputerized data processingconvolutional neural networkdeep learningdesigndietaryeffective interventionfield studygood diethuman diseasehuman subjectimprovedinfancymathematical modelmicroelectronicsmimeticsneural networkobesity managementoperationoverweight adultsrobotic systemsuccesstoolvalidation studieswearable device
项目摘要
A Human-Mimetic AI System for Automatic, Passive and Objective Dietary Assessment
Unhealthy diet is strongly linked to risks of chronic diseases, such as cardiovascular diseases,
diabetes and certain types of cancer. The Global Burden of Disease Study has found that, among
the top 17 risk factors, poor diet is overwhelmingly the No. 1 risk factor for human diseases.
Despite the strong connection between diet and health, unhealthy foods with large portion sizes
are widely consumed. Currently, 68.5% of U.S. adults are overweight, among the highest in
developed countries. The recent decline in U.S. life expectancy sent another alarming signal
about the general health of the American people. Understanding how the diet-related risk factors
affect people’s health and finding effective ways to empower them in improving lifestyle habits are
among the most important tasks in public health. Unfortunately, dietary assessment in real-world
settings has been exceedingly complex and inaccurate to implement. Technology is needed that
allows researchers to assess dietary intake easily and accurately in real world settings so that
effective intervention to manage obesity and related chronic diseases can be developed. We
propose a biomedical engineering project to address the dietary assessment problem,
taking advantage of advanced mathematical modeling, wearable electronics and artificial
intelligence.
Our research team has been improving the ability to assess diet for over a decade. We have
designed the eButton, a small wearable device pinned on clothes in front of the chest, capable of
collecting image-based dietary data objectively and passively (i.e., without depending on subject’s
self-report or volitional operation of the device). We have also developed algorithms to compute
food volumes and nutrients from images. Since the eButton was developed, it has been used by
many researchers in the U.S. and other countries for objective and passive diet-intake studies in
both adults and children.
Despite the past successes, there have been two lingering critical problems associated with
the objective and passive dietary assessment using wearable devices: 1) substantial manual
efforts are required for researchers to visually examine image data to identify foods and estimate
their volumes (portion sizes), and 2) there are privacy concerns about researchers’ viewing of
participants’ real-life images. Although solving these problems could enable the eButton and other
wearable devices for large-scale diet-intake studies, we were not able to find effective solutions
until recently when Artificial intelligence (AI) emerged. Advanced AI systems, especially those
based on deep learning, can be trained by large amounts of labeled data to produce results
comparable or even superior to those produced by human in numerous fields of applications. AI
technology is also a powerful tool for dietary assessment, potentially providing an ideal solution
to the two previously mentioned problems. We thus propose to develop a human-mimetic AI
system to recognize foods from images, estimate portion sizes, and find energy and nutrient
values from a database in a fully automatic process. Using the AI approach, there will be no need
for researchers to view participants’ real-life images, and the AI system well-respects individuals’
privacy because it is trained to recognizes human foods only, nothing else.
Currently, the performances of existing AI systems are limited by the extensive variety and
high variability of human foods, insufficient training data, and difficulty in finding appropriate
nutritional information from food databases. In this application, we propose a new strategy to
personalize the AI system for each research participant using an advanced mathematical model
of personal food choices. With this personalization step, the dimensionality of our envisioned AI
system can be reduced drastically, and our goal of automatic, objective and passive dietary
assessment can be reached realistically. We also propose to improve the electronic hardware
and develop a biomimetic camera to enlarge the field of view for the eButton. Finally, we will
conduct a thorough evaluation of the personalized AI system in real-world settings using human
subjects.
用于自动、被动和客观饮食评估的仿人人工智能系统
不健康的饮食与慢性疾病的风险密切相关,例如心血管疾病、
全球疾病负担研究发现,其中包括糖尿病和某些类型的癌症。
在前17位危险因素中,不良饮食绝对是人类疾病的第一大危险因素。
尽管饮食与健康之间存在密切联系,但大份量的不健康食品
目前,68.5% 的美国成年人超重,位居世界前列。
发达国家最近的预期寿命下降发出了另一个令人震惊的信号。
了解美国人的总体健康状况如何与饮食相关的危险因素。
影响人们的健康并找到有效的方法来帮助他们改善生活习惯
不幸的是,现实世界中的饮食评估是公共卫生中最重要的任务之一。
设置极其复杂并且实施起来不准确。
允许研究人员在现实世界中轻松准确地评估饮食摄入量,以便
可以制定有效的干预措施来控制肥胖和相关慢性疾病。
提出一个生物医学工程项目来解决饮食评估问题,
利用先进的数学模型、可穿戴电子设备和人工
智力。
十多年来,我们的研究团队一直在提高评估饮食的能力。
设计了 eButton,这是一种固定在胸前衣服上的小型可穿戴设备,能够
客观、被动地收集基于图像的饮食数据(即不依赖于受试者的饮食数据)
我们还开发了计算算法来计算。
自从 eButton 开发以来,它已被广泛使用。
美国和其他国家的许多研究人员进行了客观和被动的饮食摄入研究
成人和儿童。
尽管过去取得了成功,但仍然存在两个挥之不去的关键问题
使用可穿戴设备进行客观被动饮食评估:1)大量手册
研究人员需要目视检查图像数据来识别食物并估计
它们的体积(份量),以及 2)研究人员查看的内容存在隐私问题
尽管解决这些问题可以使 eButton 和其他技术成为可能。
对于大规模饮食摄入研究的可穿戴设备,我们无法找到有效的解决方案
直到最近人工智能(AI)出现,尤其是那些先进的人工智能系统。
基于深度学习,可以通过大量标记数据训练产生结果
在许多应用领域中,与人类生产的产品相当甚至更好。
技术也是饮食评估的强大工具,有可能提供理想的解决方案
因此,我们建议开发一种仿人人工智能。
系统从图像中识别食物,估计份量大小,并找到能量和营养素
使用人工智能方法,无需从数据库中获取值。
供研究人员查看参与者的真实图像,AI系统充分尊重个人的
隐私,因为它经过训练只能识别人类食物,而不是其他。
目前,现有人工智能系统的性能受到广泛的多样性和多样性的限制。
人类食物的变异性很大,训练数据不足,很难找到合适的食物
在此应用程序中,我们提出了一种新策略来获取食品数据库中的营养信息。
使用先进的数学模型为每个研究参与者个性化人工智能系统
通过这一个性化步骤,我们设想的人工智能的维度。
系统可以大幅减少,我们的目标是自动、客观和被动饮食
我们还建议改进电子硬件。
并开发仿生相机来扩大 eButton 的视野。
使用人类在现实环境中对个性化人工智能系统进行全面评估
科目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MINGUI SUN其他文献
MINGUI SUN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MINGUI SUN', 18)}}的其他基金
A Human-Mimetic AI System for Automatic, Passive and Objective Dietary Assessment
用于自动、被动和客观饮食评估的仿人人工智能系统
- 批准号:
10541843 - 财政年份:2021
- 资助金额:
$ 65.78万 - 项目类别:
Wearable eButton for Evaluation of Energy Balance with Environmental Context and
用于评估环境背景下的能量平衡的可穿戴电子按钮
- 批准号:
8728787 - 财政年份:2012
- 资助金额:
$ 65.78万 - 项目类别:
Wearable eButton for Evaluation of Energy Balance with Environmental Context and
用于评估环境背景下的能量平衡的可穿戴电子按钮
- 批准号:
8250717 - 财政年份:2012
- 资助金额:
$ 65.78万 - 项目类别:
Wearable eButton for Evaluation of Energy Balance with Environmental Context and
用于评估环境背景下的能量平衡的可穿戴电子按钮
- 批准号:
8543666 - 财政年份:2012
- 资助金额:
$ 65.78万 - 项目类别:
A Unified Sensor System for Ubiquitous Assessment of Diet and Physical Activity
用于无处不在的饮食和身体活动评估的统一传感器系统
- 批准号:
7896849 - 财政年份:2007
- 资助金额:
$ 65.78万 - 项目类别:
A Unified Sensor System for Ubiquitous Assessment of Diet and Physical Activity
用于无处不在的饮食和身体活动评估的统一传感器系统
- 批准号:
7490158 - 财政年份:2007
- 资助金额:
$ 65.78万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
中性粒细胞胞外诱捕网(NETs)通过AIM2炎症小体促进成人斯蒂尔病髓系细胞生成并放大细胞因子风暴的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多溴联苯醚通过肠道菌群诱导维汉成人2型糖尿病的发生及抗氧化膳食模式的拮抗作用研究
- 批准号:82160605
- 批准年份:2021
- 资助金额:34 万元
- 项目类别:地区科学基金项目
DDX11突变通过激活P38MAPK/PI3K/Akt/CREB信号通路调控钙调蛋白结合蛋白促进成人AML复发的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
I型干扰素通过下调FOXO3介导NLRC4/NLRP3激活触发成人Still病炎症风暴的研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanism of epidermal coordination during development and regeneration in zebrafish
斑马鱼发育和再生过程中表皮协调机制
- 批准号:
10643060 - 财政年份:2023
- 资助金额:
$ 65.78万 - 项目类别:
Examining the effects of Global Budget Revenue Program on the Costs and Quality of Care Provided to Cancer Patients Undergoing Chemotherapy
检查全球预算收入计划对接受化疗的癌症患者提供的护理成本和质量的影响
- 批准号:
10734831 - 财政年份:2023
- 资助金额:
$ 65.78万 - 项目类别:
Implementing Scalable, PAtient-centered Team-based Care for Adults with Type 2 Diabetes and Health Disparities (iPATH)
为患有 2 型糖尿病和健康差异的成人实施可扩展、以患者为中心的团队护理 (iPATH)
- 批准号:
10660735 - 财政年份:2023
- 资助金额:
$ 65.78万 - 项目类别:
Muscle Fatigue's Impact on Gait Mechanics and Neuromuscular Control in Knee Osteoarthritis
肌肉疲劳对膝骨关节炎步态力学和神经肌肉控制的影响
- 批准号:
10676554 - 财政年份:2023
- 资助金额:
$ 65.78万 - 项目类别:
Vision Impairment in the National Health and Aging Trends Study: Epidemiology, Social Determinants of Health, and Adverse Late Life Outcomes
国家健康和老龄化趋势研究中的视力障碍:流行病学、健康的社会决定因素和不良的晚年结局
- 批准号:
10730418 - 财政年份:2023
- 资助金额:
$ 65.78万 - 项目类别: