Understanding molecular rules governing bacteriophage specificity and virulence by high-throughput mutational and metagenomic scanning
通过高通量突变和宏基因组扫描了解控制噬菌体特异性和毒力的分子规则
基本信息
- 批准号:10317124
- 负责人:
- 金额:$ 19.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-10 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AdsorptionAffectAmino AcidsAntibiotic ResistanceBacterial Drug ResistanceBacteriophage T7BacteriophagesBinding ProteinsBiological AssayCaudoviralesClinicalCoupledDissectionDistalEngineeringEscherichia coliGene ProteinsGenesGenomeGenome engineeringHorizontal Gene TransferIndividualLearningLibrariesMediatingMetagenomicsMolecularMosaicismMutationNaturePatientsPlayPropertyResistanceRoleSamplingScanningSiteSpecificitySpeedSurfaceTechnologyTherapeuticTherapeutic UsesUrinary tract infectionVariantViralVirulencebacterial resistancecombatdeep sequencingdesigndesign-build-testexperimental studygain of functiongene functiongenetic approachgenome editingimprovedknowledgebasemetagenomemutantmutation screeningpathogenic Escherichia colipathogenic bacteriaprogramsprotein functionprototypereceptorreceptor bindingrecombinaseresistant strainscreeningsuccesssynthetic biologytherapeutic developmenttooltool development
项目摘要
PROJECT SUMMARY/ABSTRACT
Bacteriophage therapy could be a promising solution to the antibiotic resistance crisis as evidenced by many
recent success stories. However, the use of natural phages has fundamental limitations in efficacy, reliability,
scalability and speed. Natural phages have lower efficacy due evolutionary constraints, give inconsistent results
in unwieldy cocktails, and discovery new phages when bacterial resistance arises is slow and laborious. We
propose a new framework by high-throughput precision genome engineering of natural phages (as chassis) to
create potent phage variants suitable for therapeutic applications. By combining pooled selection experiments
with deep sequencing, our approach samples the sequence space of targeted phage genes via systematic
mutational profiling and mines the rich diversity of metagenomic sequences to identify new functional variants.
The sequence-function knowledgebase from these experiments enhance our basic understanding of how
mutations affect phage function, and enable a design-build-test-learn platform for rapid design of new phages
against new and resistant bacterial strains. To implement this idea, we developed what we term as ORACLE
technology for generating large libraries of phage variants with pre-defined sequences at a target locus on the
phage genome using high-throughput recombinase-mediated genome editing and Cas9-guided enrichment.
ORACLE can be applied to diversify any phage gene. In this R21 application, we will characterize and engineer
receptor binding proteins (RBP) of T7 phage to elucidate sequence-function relationship and to eliminate
pathogenic E. coli known to cause urinary tract infection. RBP is the primary determinant of host range as it
mediates interaction between phage and host receptors. In Aim 1, we will use ORACLE to systematically dissect
the functional role of individual amino acids of T7 RBP (10,507 variants) to understand which residues are critical
for specificity, virulence and stability. Ig-like domains found at the distal tip of RBP play a key role in phage
adsorption and specificity, and are rampantly exchanged among Caudovirales phages. In Aim 2, we will
functionally screen ~25,000 Ig-like domains mined from viral metagenomes by replacing native T7 Ig-like domain
to investigate gain-of-function against new hosts. We will assay both libraries (point mutants and metagenomic
variants) against a panel of 82 clinical E. coli isolates found in patients with urinary tract infection to find T7
variants for potential therapeutic use. Our initial screens show T7 gain-of-function variants capable of infecting
and killing a spontaneously resistant clinical E. coli isolate from a patient with UTI that could not be killed by
wildtype. We envision the ORACLE technology platform as a standard tool for development and optimization of
chassis phages to target different bacterial clades, strain variants, and to rapidly develop countermeasures
against resistant strains.
项目概要/摘要
正如许多人所证明的那样,噬菌体疗法可能是解决抗生素耐药性危机的一个有希望的解决方案
最近的成功案例。然而,天然噬菌体的使用在功效、可靠性、
可扩展性和速度。由于进化限制,天然噬菌体的功效较低,结果不一致
在笨重的鸡尾酒中,当细菌产生耐药性时发现新的噬菌体是缓慢而费力的。我们
通过天然噬菌体(作为底盘)的高通量精密基因组工程提出了一个新的框架
创建适合治疗应用的有效噬菌体变体。通过结合汇总选择实验
通过深度测序,我们的方法通过系统地对目标噬菌体基因的序列空间进行采样
突变分析并挖掘宏基因组序列的丰富多样性,以识别新的功能变异。
这些实验中的序列函数知识库增强了我们对如何进行的基本理解
突变影响噬菌体功能,并为快速设计新噬菌体提供了设计-构建-测试-学习平台
对抗新的和耐药的细菌菌株。为了实现这个想法,我们开发了我们所说的 ORACLE
用于在目标基因座上生成具有预定义序列的大型噬菌体变体文库的技术
使用高通量重组酶介导的基因组编辑和 Cas9 引导的富集来构建噬菌体基因组。
ORACLE 可用于使任何噬菌体基因多样化。在此 R21 应用中,我们将描述和设计
T7 噬菌体的受体结合蛋白 (RBP) 阐明序列功能关系并消除
已知可引起尿路感染的致病性大肠杆菌。 RBP 是宿主范围的主要决定因素,因为它
介导噬菌体和宿主受体之间的相互作用。在目标1中,我们将使用ORACLE来系统地剖析
T7 RBP(10,507 个变体)的各个氨基酸的功能作用,以了解哪些残基至关重要
特异性、毒力和稳定性。 RBP 远端发现的 Ig 样结构域在噬菌体中发挥关键作用
吸附和特异性,并且在有尾病毒目噬菌体之间频繁交换。在目标 2 中,我们将
通过替换天然 T7 Ig 样结构域,对从病毒宏基因组中挖掘的约 25,000 个 Ig 样结构域进行功能筛选
研究针对新宿主的功能获得。我们将分析两个文库(点突变体和宏基因组
变体)针对在尿路感染患者中发现的一组 82 种临床大肠杆菌分离株来寻找 T7
潜在治疗用途的变体。我们的初始屏幕显示 T7 功能获得性变体能够感染
杀死来自尿路感染患者的自发耐药临床大肠杆菌,该大肠杆菌无法被杀死
野生型。我们设想 ORACLE 技术平台作为开发和优化
底盘噬菌体针对不同的细菌进化枝、菌株变体,并快速制定对策
对抗耐药菌株。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Engineering a Dynamic Controllable Infectivity Switch in Bacteriophage T7.
在噬菌体 T7 中设计动态可控感染性开关。
- DOI:
- 发表时间:2022-01-21
- 期刊:
- 影响因子:4.7
- 作者:Chitboonthavisuk, Chutikarn;Luo, Chun Huai;Huss, Phil;Fernholz, Mikayla;Raman, Srivatsan
- 通讯作者:Raman, Srivatsan
Mapping the functional landscape of the receptor binding domain of T7 bacteriophage by deep mutational scanning.
通过深度突变扫描绘制 T7 噬菌体受体结合域的功能图谱。
- DOI:
- 发表时间:2021-03-09
- 期刊:
- 影响因子:7.7
- 作者:Huss, Phil;Meger, Anthony;Leander, Megan;Nishikawa, Kyle;Raman, Srivatsan
- 通讯作者:Raman, Srivatsan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srivatsan Raman其他文献
Srivatsan Raman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
孕期母体支链氨基酸代谢紊乱和子代支链氨基酸代谢酶基因遗传变异联合作用对儿童神经行为发育影响的队列研究
- 批准号:82373581
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氨基酸多态性对代谢生成亚硝(酰)胺前体物的影响机理研究
- 批准号:22376114
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
影响植物磷砷选择性吸收关键氨基酸位点的挖掘及分子机制研究
- 批准号:42307009
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低蛋白日粮脂肪和蛋白质互作影响氨基酸消化率的机制
- 批准号:32302793
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MiCMV NIa-Pro 111位氨基酸对致病性的影响及作用机制
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
Dialysate regeneration system based on photo-electrochemical urea oxidation and reactive adsorption to enable portable hemodialysis
基于光电化学尿素氧化和反应吸附的透析液再生系统,可实现便携式血液透析
- 批准号:
10761594 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
The immunogenicity and pathogenicity of HLA-DQ in solid organ transplantation
HLA-DQ在实体器官移植中的免疫原性和致病性
- 批准号:
10658665 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
Structural, spatial, and temporal features guiding amelogenins transformation of calcium phosphate into enamel
引导牙釉蛋白将磷酸钙转化为牙釉质的结构、空间和时间特征
- 批准号:
10681277 - 财政年份:2021
- 资助金额:
$ 19.44万 - 项目类别:
Structural, spatial, and temporal features guiding amelogenins transformation of calcium phosphate into enamel
引导牙釉蛋白将磷酸钙转化为牙釉质的结构、空间和时间特征
- 批准号:
10681277 - 财政年份:2021
- 资助金额:
$ 19.44万 - 项目类别:
Structural, spatial, and temporal features guiding amelogenins transformation of calcium phosphate into enamel
引导牙釉蛋白将磷酸钙转化为牙釉质的结构、空间和时间特征
- 批准号:
10297021 - 财政年份:2021
- 资助金额:
$ 19.44万 - 项目类别: