Model-aided Design and Integration of Functionalized Hybrid Nanomaterials for Enhanced Bioremediation of Per-and Polyfluoroalkyl Substances (PFASs)

功能化杂化纳米材料的模型辅助设计和集成,用于增强全氟烷基物质和多氟烷基物质 (PFAS) 的生物修复

基本信息

  • 批准号:
    10319174
  • 负责人:
  • 金额:
    $ 30.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-01 至 2025-10-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Environmental contamination by per- and polyfluoroalkyl substances (PFASs) is a major public health concern because of the wide range of toxic effects that have been associated with exposure to these persistent chemicals. Due to the strong stability of the C-F bond, very few microorganisms have been found capable of degrading PFASs, and the biodegradation is very slow and incomplete. Often, bioremediation efforts result in the formation of shorter chain PFASs that remain toxic, persistent, and highly mobile in the environment. Current abiotic treatment technologies can be more effective, but have very high energy requirements. Therefore, this research proposes an innovative remediation strategy that couples a pre-treatment step using catalytic hybrid nanomaterials with biodegradation using enriched microbial communities to achieve more efficient and complete destruction of PFASs without the formation of toxic by-products. Multifunctional reduced graphene oxide-metallic nanohybrids (e.g. rGO-nZVI-TiO2) that are capable of catalyzing defluorination and oxidation of PFASs will be synthesized and characterized for their efficiencies in converting highly stable PFASs to more biodegradable forms. Pure cultures (e.g. Dehalococcoides sp. and Dehalobacter sp.) and enriched microbial consortia collected from PFAS-contaminated sites and anaerobic wastewater treatment plants will be used to degrade different types of PFASs and measure their removal efficacy. Using metagenomic and transcriptomic tools, the microorganisms responsible for degradation, their functional characteristics, and the genes being transcribed during defluorination will be identified. By-products formed at each step of the pre-treatment reaction, and during the course of the microbial degradation of PFASs will be characterized using liquid chromatography with high- resolution mass spectrometry, 19F-nuclear magnetic resonance spectroscopy, and ion chromatography to obtain information on the identities of PFASs transformation products, degradation kinetics, and mass balance. Molecular modeling will be used to bring mechanistic insight into specific PFAS-surface and PFAS-enzyme interactions. The effect of the structural features of PFASs (i.e. branching, chain-length, type of head groups) on their biodegradability will be systematically evaluated, first by molecular modeling, and then by experimental validation. Knowledge from the chemical characterization of PFASs degradation by-products combined with in silico site-directed mutagenesis will facilitate the tuning of enzymatic activities and discovery of novel bacteria that are efficient degraders of PFASs from the natural environment. These insights will guide the systematic design of highly efficient nano-enhanced bioremediation systems for complete microbial degradation of PFASs.
项目概要 全氟烷基物质和多氟烷基物质 (PFAS) 造成的环境污染是一个主要的公共卫生问题 因为接触这些持久性化学物质会产生广泛的毒性作用。 由于C-F键的稳定性极强,目前已发现很少有微生物能够降解 PFAS 的生物降解非常缓慢且不完全。通常,生物修复工作会导致形成 短链 PFAS 仍然有毒、持久且在环境中具有高度流动性。当前非生物 处理技术可能更有效,但能量需求非常高。因此,本研究 提出了一种创新的修复策略,该策略结合了使用催化混合的预处理步骤 具有生物降解性的纳米材料利用丰富的微生物群落实现更高效、更彻底的降解 破坏 PFAS 且不形成有毒副产品。多功能还原氧化石墨烯-金属 能够催化 PFAS 脱氟和氧化的纳米杂化物(例如 rGO-nZVI-TiO2)将 其在将高度稳定的 PFAS 转化为更可生物降解的过程中的效率而被合成和表征 形式。收集纯培养物(例如 Dehalococcoides sp. 和 Dehalobacter sp.)和富集微生物群落 来自 PFAS 污染场地和厌氧废水处理厂的废水将用于降解不同的 PFAS 的类型并测量其去除效果。使用宏基因组和转录组工具, 负责降解的微生物、其功能特征以及被转录的基因 在脱氟过程中会被识别。预处理反应的每个步骤和过程中形成的副产物 PFAS 的微生物降解过程将使用高效液相色谱进行表征 分辨率质谱、 19F-核磁共振波谱和离子色谱法得到 有关 PFAS 转化产物的特性、降解动力学和质量平衡的信息。 分子模型将用于深入了解特定的 PFAS 表面和 PFAS 酶 互动。 PFAS 的结构特征(即支化、链长、头基类型)对 它们的生物降解性将首先通过分子建模,然后通过实验进行系统评估 验证。来自 PFAS 降解副产物的化学表征的知识结合 计算机定点诱变将促进酶活性的调整和新细菌的发现 它们是自然环境中 PFAS 的有效降解剂。这些见解将指导系统化 设计高效的纳米增强生物修复系统,以实现 PFAS 的完全微生物降解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Diana S Aga其他文献

Diana S Aga的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Diana S Aga', 18)}}的其他基金

Resolving Relationships: Determining the Impacts of Environmental Matrices on the Ionization Efficiencies of Per and Polyfluoroalkyl Substances (PFAS) for the Development of a Semi-Quantitation Model
解决关系:确定环境基质对全氟烷基物质和多氟烷基物质 (PFAS) 电离效率的影响,以开发半定量模型
  • 批准号:
    10580971
  • 财政年份:
    2022
  • 资助金额:
    $ 30.99万
  • 项目类别:
Supplement to Model-aided Design and Integration of Functionalized Hybrid Nanomaterials for EnhancedBioremediation of PFASs Using Supercritical Fluid Chromatography/Mass Spectrometry
使用超临界流体色谱/质谱法增强 PFAS 生物修复功能化混合纳米材料的模型辅助设计和集成的补充
  • 批准号:
    10601888
  • 财政年份:
    2022
  • 资助金额:
    $ 30.99万
  • 项目类别:
Model-aided Design and Integration of Functionalized Hybrid Nanomaterials for Enhanced Bioremediation of Per-and Polyfluoroalkyl Substances (PFASs)
功能化杂化纳米材料的模型辅助设计和集成,用于增强全氟烷基物质和多氟烷基物质 (PFAS) 的生物修复
  • 批准号:
    10515650
  • 财政年份:
    2021
  • 资助金额:
    $ 30.99万
  • 项目类别:
Model-aided Design and Integration of Functionalized Hybrid Nanomaterials for Enhanced Bioremediation of Per-and Polyfluoroalkyl Substances (PFASs)
功能化杂化纳米材料的模型辅助设计和集成,用于增强全氟烷基物质和多氟烷基物质 (PFAS) 的生物修复
  • 批准号:
    10156782
  • 财政年份:
    2021
  • 资助金额:
    $ 30.99万
  • 项目类别:
Model-aided Design and Integration of Functionalized Hybrid Nanomaterials for Enhanced Bioremediation of Per-and Polyfluoroalkyl Substances (PFASs)
功能化杂化纳米材料的模型辅助设计和集成,用于增强全氟烷基物质和多氟烷基物质 (PFAS) 的生物修复
  • 批准号:
    10728494
  • 财政年份:
    2021
  • 资助金额:
    $ 30.99万
  • 项目类别:
Bioactivation of PBDEs by Human Cytochrome P-450
人细胞色素 P-450 对 PBDE 的生物活化
  • 批准号:
    8285111
  • 财政年份:
    2012
  • 资助金额:
    $ 30.99万
  • 项目类别:
Bioactivation of PBDEs by Human Cytochrome P-450
人细胞色素 P-450 对 PBDE 的生物活化
  • 批准号:
    8447016
  • 财政年份:
    2012
  • 资助金额:
    $ 30.99万
  • 项目类别:

相似海外基金

Engineered tissue arrays to streamline deimmunized DMD gene therapy vectors
工程组织阵列可简化去免疫 DMD 基因治疗载体
  • 批准号:
    10724882
  • 财政年份:
    2023
  • 资助金额:
    $ 30.99万
  • 项目类别:
Multidomain Peptide Hydrogels as a Therapeutic Delivery Platform for Cancer Treatment
多域肽水凝胶作为癌症治疗的治疗传递平台
  • 批准号:
    10743144
  • 财政年份:
    2023
  • 资助金额:
    $ 30.99万
  • 项目类别:
Discovery of early immunologic biomarkers for risk of PTLDS through machine learning-assisted broad temporal profiling of humoral immune response
通过机器学习辅助的体液免疫反应的广泛时间分析发现 PTLDS 风险的早期免疫生物标志物
  • 批准号:
    10738144
  • 财政年份:
    2023
  • 资助金额:
    $ 30.99万
  • 项目类别:
Advancing Development of Novel Immunotherapy for Chemotherapy-induced Peripheral Neuropathy (CIPN)
推进化疗引起的周围神经病变 (CIPN) 的新型免疫疗法的发展
  • 批准号:
    10588384
  • 财政年份:
    2023
  • 资助金额:
    $ 30.99万
  • 项目类别:
Metabolic reprogramming of endothelial precursor cells in subretinal fibrosis
视网膜下纤维化中内皮前体细胞的代谢重编程
  • 批准号:
    10752924
  • 财政年份:
    2023
  • 资助金额:
    $ 30.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了