Essential role of Stasimon in motor circuit development and disease
Stasimon 在运动回路发育和疾病中的重要作用
基本信息
- 批准号:10312031
- 负责人:
- 金额:$ 58.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAfferent NeuronsAnimal ModelBehaviorBehavioralBiological AssayBreathingCell modelCellsCessation of lifeDataDeafferentation procedureDeglutitionDevelopmentDiseaseEventFunctional disorderGene DeliveryGene MutationGoalsHealthHomeostasisHumanInduced MutationInheritedIntegral Membrane ProteinInterneuronsKnockout MiceKnowledgeLinkLipidsLocomotionMammalian CellMediatingMediator of activation proteinMembrane BiologyMitochondriaMolecularMorphologyMotorMotor NeuronsMovementMusMuscleMutant Strains MiceNeuraxisNeurobiologyNeurodegenerative DisordersNeuromuscular DiseasesNeuronsPathogenesisPathogenicityPathologyPathway interactionsPatternPeripheralPhysiologicalProcessPropertyProprioceptorPublishingRegulationRespirationRoleSMN deficiencySMN protein (spinal muscular atrophy)SensoryShapesSiteSpinalSpinal Muscular AtrophySynapsesSynaptic TransmissionSystemSystems DevelopmentTestingTranslatingViralWorkbrain pathwaycell growth regulationcell typecellular targetingconditional knockoutdesignhuman diseasein vivomembermitochondrial membranemotor controlmotor deficitmotor disordermouse modelmultidisciplinaryneural circuitneuron lossneuronal survivalnovelrestorationskeletal muscle wastingspinal reflexsynaptic function
项目摘要
Motor circuits control fundamental behaviors such as swallowing, breathing and locomotion. Spinal motor
neurons are the key mediators translating motor commands generated within the central nervous system to
peripheral muscle targets. Motor neurons are activated by a precisely regulated pattern of synaptic activity from
sensory neurons, local spinal interneurons and descending pathways from the brain. Additionally, synaptic
activity received by motor neurons during early development shapes their functional properties. In contrast, gene
mutations that induce perturbations in either neuronal wiring or synaptic drive received by motor neurons often
result in motor system disorders, although the primary cellular targets and the precise molecular events remain
largely elusive. Thus, understanding the principles of neural circuit development and function as well as the
mechanisms of synaptic dysfunction and selective neuronal death in human disease represent outstanding
challenges in neurobiology. A prominent example of this situation is spinal muscular atrophy (SMA)—an inherited
neuromuscular disease caused by ubiquitous deficiency in the survival motor neuron (SMN) protein. SMA
pathogenesis involves alterations of multiple components of the motor circuit leading to abnormalities in spinal
reflexes, motor neuron loss and skeletal muscle atrophy. However, the molecular and cellular mechanisms
underlying motor circuit dysfunction in SMA remain poorly understood. In our previous work we have identified
Stasimon as a novel transmembrane protein that localizes at contacts sites between ER and mitochondria
membranes and contributes to motor dysfunction in animal models of SMA through undefined mechanisms.
Furthermore, our preliminary studies revealed that Stasimon’s conditional depletion in neural circuits severely
disrupts motor function in mouse models, pointing to an essential requirement for normal motor system
development and function. Building on these findings, our goal is to define the neural circuit components and
cellular pathway(s) in which Stasimon functions that underlie its essential role in the motor circuit and contribution
to human disease. To do so, we will employ newly developed conditional mice for cell type-specific restoration
of Stasimon in vivo to study whether Stasimon dysfunction induced by SMN deficiency acts cell autonomously
to promote death of SMA motor neurons and non-cell autonomously to alter motor neuron firing through
dysfunction of proprioceptive sensory neurons (Aim 1). We will also investigate the temporal and spatial
requirement of Stasimon for normal development and function of the sensory-motor circuit using novel
conditional knockout mice we have recently developed (Aim 2). Lastly, we will use both cellular and mouse
models to characterize the molecular function of Stasimon at the ER-mitochondria contacts and its requirement
for motor circuit function in health and disease (Aim 3). The successful accomplishment of the objectives of this
proposal will characterize novel aspects of synaptic transmission and motor circuit function as well as the
underlying mechanisms of SMA.
运动电路控制吞咽、呼吸和运动等基本行为。
神经元是将中枢神经系统内产生的运动命令转化为
外周肌肉目标由精确调节的突触活动模式激活。
感觉神经元、局部脊髓中间神经元和来自大脑的下行通路、突触。
运动神经元在早期发育过程中接受的活动决定了它们的功能特性。相比之下,基因。
通常会引起运动神经元接收的神经元接线或突触驱动扰动的突变
导致运动系统障碍,尽管主要细胞目标和精确的分子事件仍然存在
因此,理解神经回路发育和功能的原理以及
人类疾病中突触功能障碍和选择性神经元死亡的机制代表了突出的
这种情况的一个突出例子是脊髓性肌萎缩症(SMA)——一种遗传性疾病。
由于运动神经元存活蛋白 (SMN) 普遍缺乏而引起的神经肌肉疾病。
发病机制涉及运动回路多个组件的改变,导致脊柱异常。
然而,反射、运动神经元丧失和骨骼肌萎缩的分子和细胞机制。
在我们之前的工作中,我们对 SMA 潜在的运动回路功能障碍仍知之甚少。
Stasimon 作为一种新型跨膜蛋白,定位于内质网和线粒体之间的接触位点。
SMA 动物模型中的膜并通过未定义的机制导致运动功能障碍。
此外,我们的初步研究表明,Stasimon 的神经回路条件性损耗严重
扰乱小鼠模型的运动功能,表明正常运动系统的基本要求
基于这些发现,我们的目标是定义神经回路组件和功能。
Stasimon 发挥作用的细胞通路是其在运动回路中的重要作用和贡献
人类疾病。为此,我们将采用新开发的条件小鼠进行细胞类型特异性恢复。
研究 SMN 缺陷引起的 Stasimon 功能障碍是否自主作用于细胞
促进 SMA 运动神经元和非细胞自主死亡,通过改变运动神经元放电
本体感觉神经元功能障碍(目标 1)我们还将研究时间和空间。
Stasimon 使用新颖的感觉运动电路正常发育和功能的要求
我们最近开发的条件敲除小鼠(目标 2)最后,我们将使用细胞和小鼠。
表征 Stasimon 在内质网-线粒体接触处的分子功能及其要求的模型
健康和疾病中的运动回路功能(目标 3)。
该提案将描述突触传递和运动电路功能的新颖方面以及
SMA 的潜在机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Livio Pellizzoni其他文献
Livio Pellizzoni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Livio Pellizzoni', 18)}}的其他基金
Mechanisms and therapeutic targeting of motor neuron death in SMA
SMA 运动神经元死亡的机制和治疗靶向
- 批准号:
10334501 - 财政年份:2020
- 资助金额:
$ 58.18万 - 项目类别:
Mechanisms and therapeutic targeting of motor neuron death in SMA
SMA 运动神经元死亡的机制和治疗靶向
- 批准号:
10559530 - 财政年份:2020
- 资助金额:
$ 58.18万 - 项目类别:
Mechanisms and therapeutic targeting of motor neuron death in SMA
SMA 运动神经元死亡的机制和治疗靶向
- 批准号:
10087983 - 财政年份:2020
- 资助金额:
$ 58.18万 - 项目类别:
RNA-mediated mechanisms of motor system dysfunction in spinal muscular atrophy
RNA介导的脊髓性肌萎缩症运动系统功能障碍的机制
- 批准号:
10022699 - 财政年份:2019
- 资助金额:
$ 58.18万 - 项目类别:
Essential role of Stasimon in motor circuit development and disease
Stasimon 在运动回路发育和疾病中的重要作用
- 批准号:
10531553 - 财政年份:2019
- 资助金额:
$ 58.18万 - 项目类别:
Essential role of Stasimon in motor circuit development and disease
Stasimon 在运动回路发育和疾病中的重要作用
- 批准号:
10057404 - 财政年份:2019
- 资助金额:
$ 58.18万 - 项目类别:
The Role of p38 MAPK Activation in Spinal Muscular Atrophy
p38 MAPK 激活在脊髓性肌萎缩症中的作用
- 批准号:
9317946 - 财政年份:2017
- 资助金额:
$ 58.18万 - 项目类别:
A genome-wide phenotypic screen for modifiers of SMN expression and function
SMN 表达和功能修饰因子的全基因组表型筛选
- 批准号:
8702410 - 财政年份:2014
- 资助金额:
$ 58.18万 - 项目类别:
相似国自然基金
面向类脑智能感知的编码运算一体化柔性电子传入神经元的研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
不同刺灸法激活的穴位传入神经元及时间-空间反应特性
- 批准号:81973967
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
有髓传入神经纤维相应DRG神经元中Cav3.2通道N-糖基化在DPN触诱发痛发生发展中的作用机制研究
- 批准号:81801219
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
通过内皮素-1探索初级传入神经元感受疼痛或搔痒的细胞机制
- 批准号:81171040
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
The Injectrode- An injectable, easily removable electrode as a trial lead for baroreceptor activation therapy to treat hypertension and heart failure
Injectrode——一种可注射、易于拆卸的电极,作为压力感受器激活疗法的试验引线,以治疗高血压和心力衰竭
- 批准号:
10697600 - 财政年份:2023
- 资助金额:
$ 58.18万 - 项目类别:
MECHANISMS OF VISCERAL PAIN DRIVEN BY SMALL INTESTINAL MICROBIOTA
小肠微生物驱动内脏疼痛的机制
- 批准号:
10836298 - 财政年份:2023
- 资助金额:
$ 58.18万 - 项目类别:
Biomarkers of SUDEP risk based on brain-heart-lungs network dynamics
基于脑-心-肺网络动力学的SUDEP风险生物标志物
- 批准号:
10561946 - 财政年份:2023
- 资助金额:
$ 58.18万 - 项目类别:
Development of positive TMEM97 modulators for treating neuropathic pain
开发用于治疗神经性疼痛的正 TMEM97 调节剂
- 批准号:
10642506 - 财政年份:2023
- 资助金额:
$ 58.18万 - 项目类别: